Martin H. Müser

Learn More
The Green's function molecular dynamics method, which enables one to study the elastic response of a three-dimensional solid to an external stress field by taking into consideration only the surface atoms, was implemented as an extension to an open source classical molecular dynamics simulation code LAMMPS. This was done in the style of fixes. The first(More)
In this work, single-asperity contact mechanics is investigated for positive and negative work of adhesion Δγ. In the latter case, finite-range repulsion acts in addition to hard-wall constraints. This constitutes a continuum model for a contact immersed in a strongly wetting fluid, which can only be squeezed out in the center of the contact through a(More)
The spectral density of quantum mechanical Frenkel Kontorova chains moving in disordered, external potentials is investigated by means of path-integral molecular dynamics. If the second moment of the embedding potential is well defined (roughness exponent), there is one regime in which the chain is pinned (large masses of chain particles) and one in which(More)
  • Piroska Dömötör, Péter Földi, +11 authors andWolfgang P Schleich
  • 2015
Classically, rigid objects with elongated shapes can fit through apertures only when properly aligned. Quantum-mechanical particles which have internal structure (e.g. a diatomic molecule) also are affected during attempts to pass through small apertures, but there are interesting differences with classical structured particles. We illustrate here some of(More)
Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic(More)
Piezoelectric (strain) coefficients dij of quartz are calculated in terms of molecular dynamics as a function of pressure and temperature. We review the necessary formulas for the computation of electromechanical materials coefficients obtained at constant stress and temperature, and discuss how to overcome complications of the definition of polarization(More)
  • 1