#### Filter Results:

#### Publication Year

2005

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Organism

Learn More

Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general,… (More)

The Green's function molecular dynamics method, which enables one to study the elastic response of a three-dimensional solid to an external stress field by taking into consideration only the surface atoms, was implemented as an extension to an open source classical molecular dynamics simulation code LAMMPS. This was done in the style of fixes. The first… (More)

The spectral density of quantum mechanical Frenkel Kontorova chains moving in disordered, external potentials is investigated by means of path-integral molecular dynamics. If the second moment of the embedding potential is well defined (roughness exponent), there is one regime in which the chain is pinned (large masses of chain particles) and one in which… (More)

Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic… (More)

Sufficiently thin elastic sheets wrinkle when they are in contact with a small adhesive counterbody. Despite significant progress on the dynamics of wrinkle formation and morphology, little is known about how wrinkles impede the relative sliding motion of the counterbody. Using molecular dynamics we demonstrate that instabilities are likely to occur during… (More)

Piezoelectric (strain) coefficients dij of quartz are calculated in terms of molecular dynamics as a function of pressure and temperature. We review the necessary formulas for the computation of electromechanical materials coefficients obtained at constant stress and temperature, and discuss how to overcome complications of the definition of polarization… (More)

- ‹
- 1
- ›