Learn More
Assigning effective atomic charges that properly reproduce the electrostatic fields of molecules is a crucial step in the construction of accurate interatomic potentials. We propose a new approach to calculate these charges, which as previous approaches are, is based on the idea of charge equilibration. However, we only allow charge to flow between(More)
Using a theoretical approach and computer simulations, we calculate the normal stiffness K(perpendicular) and the transverse stiffness K(parallel) of the interface between two contacting isotropic solids with randomly rough surfaces and Poisson ratio ν. The theoretical predictions for K(perpendicular) agree well with the simulations. Moreover, the(More)
A microscopic theory for the ubiquitous phenomenon of static friction is presented. Interactions between two surfaces are modeled by an energy penalty that increases exponentially with the degree of surface overlap. The resulting static friction is proportional to load, in accordance with Amontons's laws. However, the friction coefficient between bare(More)
Wear limits the life-span of many mechanical devices with moving parts. To reduce wear, lubricants are frequently enriched with additives, such as zinc phosphates, that form protective films on rubbing surfaces. Using first-principles molecular dynamics simulations of films derived from commercial additives, we unraveled the molecular origin of how antiwear(More)
Two methods are compared that are used in path integral simulations. Both methods aim to achieve faster convergence to the quantum limit than the so-called primitive algorithm (PA). One method, originally proposed by Taka-hashi and Imada, is based on a higher-order approximation (HOA) of the quantum mechanical density operator. The other method is based(More)
A recently suggested mechanism for the stress memory of various metal phosphates is investigated experimentally. Based on first-principles simulations [N. J. Mosey et al., Science 307, 1612 (2005)], it had been argued that atoms with flexible coordination, such as zinc or heavy-metal cations, act as network-forming agents, undergoing irreversible(More)
Discrete sine-Gordon (SG) chains are studied with path-integral molecular dynamics. Chains commensurate with the substrate show the transition from pinning to quantum creep at bead masses slightly larger than in the continuous SG model. Within the creep regime, a field-driven transition from creep to complete depinning is identified. The effects of disorder(More)
A statistical field theory is formulated, which allows one to calculate the pressure distribution Pr(p) in a contact formed by an elastic body and a rigid counter face of arbitrary topography. It is a cumulant expansion, which contains Persson's contact mechanics theory as the leading-order term. Our approach provides a framework with which corrections can(More)