Learn More
We report on machine learning experiments to distinguish deceptive from nondeceptive speech in the Columbia-SRI-Colorado (CSC) corpus. Specifically, we propose a system combination approach using different models and features for deception detection. Scores from an SVM system based on prosodic/lexical features are combined with scores from a Gaussian(More)
To date, studies of deceptive speech have largely been confined to descriptive studies and observations from subjects, researchers , or practitioners, with few empirical studies of the specific lexical or acoustic/prosodic features which may characterize deceptive speech. We present results from a study seeking to distinguish deceptive from non-deceptive(More)
We summarize recent progress in automatic speech-to-text transcription at SRI, ICSI, and the University of Washington. The work encompasses all components of speech modeling found in a state-of-the-art recognition system, from acoustic features, to acoustic modeling and adaptation, to language modeling. In the front end, we experimented with nonstandard(More)
Previous studies of human performance in deception detection have found that humans generally are quite poor at this task, comparing unfavorably even to the performance of automated procedures. However, different scenarios and speakers may be harder or easier to judge. In this paper we compare human to machine performance detecting deception on a single(More)
Background noise and channel degradations seriously constrain the performance of state-of-the-art speech recognition systems. Studies comparing human speech recognition performance with automatic speech recognition systems indicate that the human auditory system is highly robust against background noise and channel variabilities compared to automated(More)
We present a method to combine the standard and throat microphone signals for robust speech recognition in noisy environments. Our approach is to use the probabilistic optimum filter (POF) mapping algorithm to estimate the standard microphone clean-speech feature vectors, used by standard speech recognizers, from both microphones' noisy-speech feature(More)
This article describes our submission to the speaker identification (SID) evaluation for the first phase of the DARPA Robust Automatic Transcription of Speech (RATS) program. The evaluation focuses on speech data heavily degraded by channel effects. We show here how we designed a robust system using multiple streams of noise-robust features that were(More)
Deep Neural Network (DNN) based acoustic models have shown significant improvement over their Gaussian Mixture Model (GMM) counterparts in the last few years. While several studies exist that evaluate the performance of GMM systems under noisy and channel degraded conditions, noise robustness studies on DNN systems have been far fewer. In this work we(More)
We present an investigation of segments that map to GLOBAL LIES, that is, the intent to deceive with respect to salient topics of the discourse. We propose that identifying the truth or falsity of these CRITICAL SEGMENTS may be important in determining a speaker's veracity over the larger topic of discourse. Further , answers to key questions, which can be(More)
The CALO Meeting Assistant (MA) provides for distributed meeting capture, annotation, automatic transcription and semantic analysis of multiparty meetings, and is part of the larger CALO personal assistant system. This paper presents the CALO-MA architecture and its speech recognition and understanding components, which include real-time and offline speech(More)