Martin F. Vieweg

Learn More
Arbuscular mycorrhiza (AM) is a widespread symbiotic association between plants and fungal microsymbionts that supports plant development under nutrient-limiting and various stress conditions. In this study, we focused on the overlapping genetic program activated by two commonly studied microsymbionts in addition to identifying AM-related genes. We thus(More)
The MtTrHb1 and MtTrHb2 genes of the model legume Medicago truncatula Gaertn. encode proteins homologous to truncated hemoglobins (TrHb) from plants and a range of different microorganisms. Induction of MtTrHb1 in root nodules and expression of MtTrHb2 in root nodules, as well as in mycorrhizal roots, were shown by quantitative real-time reverse(More)
The VfLb29 leghemoglobin gene promoter was polymerase chain reaction-amplified from a Vicia faba genomic library and was fused to the gusAint coding region. Expression of the chimeric gene was analyzed in transgenic hairy roots of the legumes V. faba, V. hirsuta, and Medicago truncatula as well as in transgenic Nicotiana tabacum plants. The VfLb29 promoter(More)
Legume plants are able to enter two different endosymbioses with soil prokaryotes and soil fungi, leading to nitrogen-fixing root nodules and to arbuscular mycorrhiza (AM), respectively. We applied in silico and microarray-based transcriptome profiling approaches to uncover the transcriptome of developing root nodules and AM roots of the model legume(More)
In this study the further characterization of the Vicia faba leghaemoglobin promoter pVfLb29 is presented that was previously shown to be specifically active in the infected cells of root nodules and in arbuscule-containing cells of mycorrhizal roots. Using promoter studies in transgenic hairy roots of the Pisum sativum mutant RisNod24, disabled in the(More)
The nodule-specific MtNOD25 gene of the model legume Medicago truncatula encodes a modular nodulin composed of different repetitive modules flanked by distinct N- and C-termini. Although similarities are low with respect to all repetitive modules, both the N-terminal signal peptide (SP) and the C-terminus are highly conserved in modular nodulins from(More)
  • 1