Learn More
Upon introducing charge carriers into the copper-oxygen sheets of the enigmatic lamellar cuprates, the ground state evolves from an insulator to a superconductor and eventually to a seemingly conventional metal (a Fermi liquid). Much has remained elusive about the nature of this evolution and about the peculiar metallic state at intermediate hole-carrier(More)
Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the(More)
Studies of the electromagnetic response of various classes of correlated electron materials including transition-metal oxides, organic and molecular conductors, intermetallic compounds with d and f electrons, as well as magnetic semiconductors are reviewed. Optical inquiry into correlations in all these diverse systems is enabled by experimental access to(More)
The highly charged nanocontainer capsule of the type [pentagon]12[linker]30 identical with [(Mo)Mo5O21(H2O)6]12[Mo2O4(SO4)]30 with 20 nanosized pores and channels allows the entrance of cations like Pr3+: the latter are positioned at two different sites and have two different coordination shells, corresponding to a coordination chemistry under confined(More)
Polarization rotation in isotropic materials is commonly associated with chirality, i.e., structures with a handedness which are not identical with their mirror image. We observe this effect in the visible and near-IR regions at oblique incidence in the optical response of a subwavelength square array of holes. Mapping the complete k space via(More)
Direct evidence of quantum coherence in a single-molecule magnet in a frozen solution is reported with coherence times as long as T{2}=630+/-30 ns. We can strongly increase the coherence time by modifying the matrix in which the single-molecule magnets are embedded. The electron spins are coupled to the proton nuclear spins of both the molecule itself and,(More)
Generating, controlling, and monitoring spin effects in conducting nanostructures by using light is a highly important scientifi c and technological challenge. [ 1 , 2 ] Moreover the possibility of coupling the optical and magnetic properties in nanostructured materials can lead to the creation of novel devices with photonic and magnetic properties. Control(More)
This study tested the hypothesis that airway relaxation to furosemide is mediated via the Na-K-2Cl cotransporter. If this mechanism exists in airway smooth muscle like in vascular smooth muscle, changes in airway relaxation should be associated with changes in Na-K-2Cl cotransporter function, and both should be substrate dependent. Tracheal rings from(More)
Using data collected by the HERA-B experiment, we have measured the fraction of J/ψ's produced via radiative χ c decays in interactions of 920 GeV protons with carbon and titanium targets. We obtained R χ c = 0. fraction of J/ψ from χ c decays averaged over proton–carbon and proton–titanium collisions. This result is in agreement with previous measurements(More)