Martin Dürr

Learn More
PACS development has now reached a stage where it can clearly be stated that the technology for storage, networking and display in a fully digital environment is available. This is reflected by an already large and rapidly increasing number of PACS installations in USA, Western Europe and Japan. Such installations consist of a great variety of information(More)
Nonsequential double ionization of Ar by 45 fs laser pulses (800 nm) at (4-7)x10;{13} W/cm;{2} was explored in fully differential measurements. Well below the field-modified recollision threshold we enter the multiphoton regime. Strongly correlated back-to-back emission of the electrons along the polarization direction is observed to dominate in striking(More)
Using a reaction microscope, three-dimensional (3D) electron (and ion) momentum (P) spectra have been recorded for carrier-envelope-phase (CEP) stabilized few-cycle ( approximately 5 fs), intense ( approximately 4 x 10(14) W/cm2) laser pulses (740 nm) impinging on He. Preferential emission of low-energy electrons (E(e)<15 eV) to either hemisphere is(More)
This paper describes experiments with a voice-controlled robot system to be used in endoscopic neurosurgery. The robot was a modified version of the robot described in previous publications of the group at Fraunhofer IPA and HSK. To control the robot a voice-controlled user interface was developed. The experiments were conducted on cadavers for three(More)
In kinematically complete studies we explore double ionization (DI) of Ne and Ar in the threshold regime (I>3x10{13} W/cm{2}) for 800 nm, 45 fs pulses. The basic differences are found in the two-electron momentum distributions-"correlation" (CO) for Ne and "anticorrelation" (ACO) for Ar-that can be partially explained theoretically within a 3D classical(More)
We report on first proof-of-principles results on non-sequential double ionization of argon and neon achieved by using a newly developed long-cavity Ti:sapphire femtosecond oscillator with a pulse duration of 45 fs and a repetition of 6.2 MHz combined with a dedicated reaction microscope. Under optimized experimental conditions, peak intensities larger than(More)
Double ionization of the helium atom by slow electron impact (E(0)=106 eV) is studied in a kinematically complete experiment. Because of a low excess energy E(exc)=27 eV above the double ionization threshold, a strongly correlated three-electron continuum is realized. This is demonstrated by measuring and calculating the fully differential cross sections(More)