Martin Clémancey

Learn More
Progress in understanding the mechanism underlying the enzymatic formation of iron-sulfur clusters is difficult since it involves a complex reaction and a multi-component system. By exploiting different spectroscopies, we characterize the effect on the enzymatic kinetics of cluster formation of CyaY, the bacterial ortholog of frataxin, on cluster formation(More)
TtcA catalyzes the post-transcriptional thiolation of cytosine 32 in some tRNAs. The enzyme from Escherichia coli was homologously overexpressed in E. coli. The purified enzyme is a dimer containing an iron-sulfur cluster and displays activity in in vitro assays. The type and properties of the cluster were investigated using a combination of UV-visible(More)
The biosynthesis of the organometallic H cluster of [Fe–Fe] hydrogenase requires three accessory proteins, two of which (HydE and HydG) belong to the radical S-adenosylmethionine enzyme superfamily. The third, HydF, is an Fe–S protein with GTPase activity. The [4Fe–4S] cluster of HydF is bound to the polypeptide chain through only the three, conserved,(More)
The preparation of [Fe(IV)(O)(MePy2tacn)](2+) (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [Fe(II)(MePy2tacn)(solvent)](2+) (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of(More)
Radical SAM enzymes generally contain a [4Fe–4S]2+/1+ (RS cluster) cluster bound to the protein via the three cysteines of a canonical motif CxxxCxxC. The non-cysteinyl iron is used to coordinate SAM via its amino-carboxylate moiety. The coordination-induced proximity between the cluster acting as an electron donor and the adenosyl–sulfonium bond of SAM(More)
  • 1