Martin C. Richardson

Learn More
Three-dimensional fluorescent nanostructures are photoinduced by a near-infrared high repetition rate femtosecond laser in a silver-containing femto-photoluminescent glass. By adjusting the laser dose (fluence, number of pulses, and repetition rate), these stabilized intense fluorescent structures, composed of silver clusters, can be achieved with a perfect(More)
Single-channel waveguides and Y couplers were fabricated in chalcogenide thin films by use of femtosecond laser pulses from a 25-MHz repetition rate Ti:sapphire laser. Refractive-index differentials (delta n > 10(-2)) were measured through interferometric microscopy and are higher than the typical values reported for oxide glasses. The dependence of the(More)
Applications requiring long-range atmospheric propagation are driving the development of high-power thulium fiber lasers. We report on the performance of two different laser configurations for high-power tunable thulium fiber lasers: one is a single oscillator utilizing a volume Bragg grating for wavelength stabilization; the other is a master oscillator(More)
We report a novel, Tm-doped photonic crystal fiber (PCF) actively Q-switched oscillator that provides ~8.9 kW peak power with 435 µJ, 49 ns pulses at 10 kHz repetition rate at 2 μm wavelength. This fiber has a mode-field area >1000 μm2, the largest of any flexible PCF providing diffraction-limited beam quality to the best of our knowledge. As an(More)
We report the influence of higher order modes (HOMs) in large mode fibers operation in Q-switched oscillator configurations at ~2 μm wavelength. S(2) measurements confirm guiding of LP(11) and LP(02) fiber modes in a large mode area (LMA) step-index fiber, whereas a prototype photonic crystal fiber (PCF) provides nearly single-mode performance with a small(More)
Femtosecond laser direct writing is employed for the fabrication of buried tubular waveguides in bulk poly(methyl methacrylate). A novel technique using selective chemical etching is presented to resolve the two-dimensional refractive-index profile of the fabrication structures. End-to-end coupling in the waveguides reveals a near-field intensity(More)
We used guided-mode resonance filters (GMRFs), fabricated using thin-film deposition and chemical etching, as intracavity feedback elements to stabilize and narrow the output spectrum in thulium-doped fiber oscillators operating in the 2 μm wavelength regime, producing linewidths of <700 pm up to 10 W power levels. A Tm fiber-based amplified spontaneous(More)
We report on a Tm:fiber master oscillator power amplifier (MOPA) system producing 109 W CW output power, with >15 dB polarization extinction ratio, sub-nm spectral linewidth, and M2 <1.25. The system consists of polarization maintaining (PM) fiber and PM-fiber components including tapered fiber bundle pump combiners, a single-mode to large mode area mode(More)
We report amplification of sub-10-100 ns pulses with repetition rates from 1 to 20 kHz in a rod-type thulium-doped photonic crystal fiber with 80 μm core diameter. The rod is pumped with a 793 nm laser diode and produces the highest peak power at 1 kHz repetition rate with 6.5 ns pulse duration and more than 7 W average output power. This result exemplifies(More)
A new Laser-Induced Breakdown Spectroscopy (LIBS) enhancement method utilizing interaction between microwave radiation and laser-induced plasma has been evaluated. Experimental parameters such as laser pulse irradiance, microwave duration, and surrounding gas were studied and optimized for the microwave effect through a series of experiments on a piece of(More)