Learn More
One form of congenital muscular dystrophy, rigid spine syndrome (MIM 602771), is a rare neuromuscular disorder characterized by early rigidity of the spine and respiratory insufficiency. A locus on 1p35-36 (RSMD1) was recently found to segregate with rigid spine muscular dystrophy 1 (ref. 1). Here we refine the locus and find evidence of linkage(More)
Muscular dystrophies with reduced glycosylation of alpha-dystroglycan (alpha-DG), commonly referred to as dystroglycanopathies, are a heterogeneous group of autosomal recessive conditions which include a wide spectrum of clinical severity. Reported phenotypes range from severe congenital onset Walker-Warburg syndrome (WWS) with severe structural brain and(More)
Central core disease (CCD) is a congenital myopathy due to dominant mutations in the skeletal muscle ryanodine receptor gene (RYR1). The authors report three patients from two consanguineous families with symptoms of a congenital myopathy, cores on muscle biopsy, and confirmed linkage to the RYR1 locus. Molecular genetic studies in one family identified a(More)
The dystroglycanopathies are a novel group of human muscular dystrophies due to mutations in known or putative glycosyltransferase enzymes. They share the common pathological feature of a hypoglycosylated form of alpha-dystroglycan, diminishing its ability to bind extracellular matrix ligands. The LARGE glycosyltransferase is mutated in both the(More)
The congenital muscular dystrophies (CMD) are a heterogeneous group of autosomal recessive disorders. A new pathomechanism has recently been identified in a group of these disorders in which known or putative glycosyltransferases are defective. Common to all these conditions is the hypoglycosylation of alpha-dystroglycan. Fukuyama CMD, muscle-eye-brain(More)
The congenital muscular dystrophies (CMD) are a heterogeneous group of autosomal recessive disorders presenting in infancy with muscle weakness, contractures, and dystrophic changes on skeletal-muscle biopsy. Structural brain defects, with or without mental retardation, are additional features of several CMD syndromes. Approximately 40% of patients with CMD(More)
BACKGROUND Walker-Warburg syndrome (WWS) is an autosomal recessive condition characterised by congenital muscular dystrophy, structural brain defects, and eye malformations. Typical brain abnormalities are hydrocephalus, lissencephaly, agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigration, which causes(More)
Dominant mutations in the skeletal muscle ryanodine receptor (RYR1) gene are well-recognized causes of both malignant hyperthermia susceptibility (MHS) and central core disease (CCD). More recently, recessive RYR1 mutations have been described in few congenital myopathy patients with variable pathology, including multi-minicores. Although a clinical overlap(More)
BACKGROUND Mutations in the fukutin-related protein gene FKRP cause limb-girdle muscular dystrophy (LGMD2I) as well as a form of congenital muscular dystrophy (MDC1C). OBJECTIVE To define the phenotype in LGMD2I. METHODS The authors assessed 16 patients from 14 families with FKRP gene mutations and LGMD and collected the results of mutation analysis,(More)
Two forms of congenital muscular dystrophy (CMD), Fukuyama CMD and CMD type 1C (MDC1C) are caused by mutations in the genes encoding two putative glycosyltransferases, fukutin and fukutin-related protein (FKRP). Additionally, mutations in the FKRP gene also cause limb-girdle muscular dystrophy type 2I (LGMD2I), a considerably milder allelic variant than(More)