Learn More
Structural analysis of flexible macromolecular systems such as intrinsically disordered or multidomain proteins with flexible linkers is a difficult task as high-resolution techniques are barely applicable. A new approach, ensemble optimization method (EOM), is proposed to quantitatively characterize flexible proteins in solution using small-angle X-ray(More)
Abscisic acid (ABA) is a key hormone regulating plant growth, development and the response to biotic and abiotic stress. ABA binding to pyrabactin resistance (PYR)/PYR1-like (PYL)/Regulatory Component of Abscisic acid Receptor (RCAR) intracellular receptors promotes the formation of stable complexes with certain protein phosphatases type 2C (PP2Cs), leading(More)
Replication of non-segmented negative-strand RNA viruses requires the continuous supply of the nucleoprotein (N) in the form of a complex with the phosphoprotein (P). Here, we present the structural characterization of a soluble, heterodimeric complex between a variant of vesicular stomatitis virus N lacking its 21 N-terminal residues (N(Δ21)) and a peptide(More)
Hendra virus (HeV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The HeV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid. Recruitment of the viral polymerase onto the nucleocapsid template relies on the interaction between the C-terminal domain, N(TAIL), of(More)
Natively unfolded proteins play key roles in normal and pathological biochemical processes. Despite their importance for function, this category of proteins remains beyond the reach of classical structural biology because of their inherent conformational heterogeneity. We present a description of the intrinsic conformational sampling of unfolded proteins(More)
Tau, a natively unstructured protein that regulates the organization of neuronal microtubules, is also found in high concentrations in neurofibrillary tangles of Alzheimer's disease and other neurodegenerative disorders. The conformational transition between these vastly different healthy and pathological forms remains poorly understood. We have measured(More)
Classical protein structure determination by NMR relies on short-range interproton distances (nOe). 1 Despite successful application to the study of compact, globular molecules, this method nevertheless encounters severe limitations when applied to larger or more complex systems. Recently, our conception of the future of macromolecular structure(More)
Intrinsically unstructured proteins play key biochemical roles in a vast range of normal and pathological processes. To study these systems, it is necessary to invoke an ensemble of rapidly interconverting conformations. Residual dipolar couplings (RDCs) are particularly powerful probes of the behavior of unfolded proteins, reporting on time and(More)
Despite their importance for biological activity, slower molecular motions beyond the nanosecond range remain poorly understood. We have assembled an unprecedented set of experimental NMR data, comprising up to 27 residual dipolar couplings per amino acid, to define the nature and amplitude of backbone motion in protein G using the Gaussian axial(More)