Learn More
Previous studies have shown that the reovirus lambda1 core protein harbors a putative nucleotide-binding motif and exhibits an affinity for nucleic acids. In addition, a nucleoside triphosphate phosphohydrolase activity present in reovirus cores has been recently assigned to lambda1 using gene reassortment analysis. In this study, it was demonstrated that(More)
It is believed that peach latent mosaic viroid (PLMVd) strands of both the plus and minus polarities fold into similar secondary and tertiary structures. In order to verify this hypothesis, the behavior of both strands in three biophysical assays was examined. PLMVd transcripts of plus and minus polarity were found to exhibit distinct electrophoretic(More)
Clinical data suggest that iron is a negative factor in chronic hepatitis C; however, the molecular mechanisms by which iron modulates the infectious cycle of hepatitis C virus (HCV) remain elusive. To explore this, we utilized cells expressing a HCV replicon as a well-established model for viral replication. We demonstrate that iron administration(More)
The 5'-end of the flavivirus genome harbors a methylated (m7)GpppA(2'OMe) cap structure, which is generated by the virus-encoded RNA triphosphatase, RNA (guanine-N7) methyltransferase, nucleoside 2'-O-methyltransferase, and RNA guanylyltransferase. The presence of the flavivirus guanylyltransferase activity in NS5 has been suggested by several groups but(More)
Characterization of the phosphohydrolytic activities of recombinant reovirus lambda1 protein demonstrates that, in addition to the previously reported nucleoside triphosphate phosphohydrolase and helicase activities, the protein also possesses RNA 5'-triphosphatase activity. This activity was absolutely dependent on the presence of a divalent cation, Mg2+(More)
BACKGROUND/AIMS Infection with hepatitis C virus (HCV) is associated with alterations in body iron homeostasis by poorly defined mechanisms. To seek for molecular links, we employed an established cell culture model for viral replication, and assessed how the expression of an HCV subgenomic replicon affects iron metabolism in host Huh7 hepatoma cells. (More)
The hepatitis C virus nonstructural 5B protein (NS5B) protein has been shown to require either magnesium or manganese for its RNA-dependent RNA polymerase activity. As a first step toward elucidating the nature and the role(s) of the metal ions in the reaction chemistry, we have utilized endogenous tryptophan fluorescence to quantitate the interactions of(More)
A recent study has shown that the reovirus lambda1 protein can unwind double-stranded nucleic acid molecules, a process energetically coupled to the hydrolysis of nucleoside 5'-triphosphates. In the present study, it was demonstrated that lambda1, expressed as a fusion protein with the Escherichia coli maltose-binding protein (MBP), possesses a non-specific(More)
The broad spectrum antiviral nucleoside ribavirin displays activity against a variety of RNA and DNA viruses. A number of possible mechanisms have been proposed during the past 30 years to account for the antiviral activity of ribavirin, including the possibility that ribavirin might have a negative effect on the synthesis of the RNA cap structure of viral(More)