Learn More
The molecular mechanisms controlling formation and remodelling of neuronal extensions are of considerable interest for the understanding of neuronal development and plasticity. Determination of neurite outgrowth in cell culture is a widely used approach to investigate these phenomena. This is generally done by a time consuming tracing of individual neurites(More)
In this work we demonstrate the feasibility of applying small-angle X-ray scattering computed tomography (SAXS-CT) for non-invasive molecular imaging of myelin sheaths in a rat brain. Our results show that the approach yields information on several quantities, including the relative myelin concentration, its periodicity, the total thickness of the myelin(More)
Novel radiography approaches based on the wave nature of x-rays when propagating through matter have a great potential for improved future x-ray diagnostics in the clinics. Here, we present a significant milestone in this imaging method: in-vivo multi-contrast x-ray imaging of a mouse using a compact scanner. Of particular interest is the enhanced contrast(More)
We report the first experimental soft-tissue phase-contrast tomography results using a conventional x-ray tube source, with a millimeter-sized focal spot. The setup is based on a Talbot-Lau grating interferometer operated at a mean energy of 28 keV. We present three-dimensional ex vivo images of a chicken heart sample, fixated in formalin. The results(More)
We introduce a novel x-ray imaging approach that yields information about the local texture of structures smaller than the image pixel resolution inside an object. The approach is based on a recently developed x-ray dark-field imaging technique, using scattering from sub-micron structures in the sample. We show that the method can be used to determine the(More)
Here we review our recent progress in the field of X-ray dark-field and phase-contrast imaging using a grating interferometer. We describe the basic imaging principles of grating-based phase-contrast and dark-field radiography and present some exemplary results obtained for simple test objects and biological specimens. Furthermore, we discuss how(More)
To explore the future clinical potential of improved soft-tissue visibility with grating-based X-ray phase contrast (PC), we have developed a first preclinical computed tomography (CT) scanner featuring a rotating gantry. The main challenge in the transition from previous bench-top systems to a preclinical scanner are phase artifacts that are caused by(More)
Potential applications of grating-based X-ray phase-contrast imaging are investigated in various fields due to its compatibility with laboratory X-ray sources. So far the method was mainly restricted to X-ray energies below 40 keV, which is too low to examine dense or thick objects, but a routine operation at higher energies is on the brink of realisation.(More)
In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in(More)
The implementation of hybrid fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) has been shown to be a necessary development, not only for combining anatomical with functional and molecular contrast, but also for generating optical images of high accuracy. FMT affords highly sensitive 3-D imaging of fluorescence bio-distribution, but(More)