#### Filter Results:

#### Publication Year

1997

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We investigate a class of hierarchical mixtures-of-experts (HME) models where generalized linear models with nonlinear mean functions of the form psi (alpha + xT beta) are mixed. Here psi (.) is the inverse link function. It is shown that mixtures of such mean functions can approximate a class of smooth functions of the form psi (h(x)), where h(.) epsilon… (More)

authors develop binomial-beta hierarchical models for ecological inference using insights from the literature on hierarchical models based on Markov chain Monte Carlo algorithms and King's ecological inference model. The new approach reveals some features of the data that King's approach does not, can be easily generalized to more complicated problems such… (More)

We consider a class of nonlinear models based on mixtures of local autoregressive time series. At any given time point, we have a certain number of linear models, denoted as experts, where the vector of covariates may include lags of the dependent variable. Additionally, we assume the existence of a latent multinomial variable, whose distribution depends on… (More)

| In the class of hierarchical mixtures-of-experts (HME) models, \experts" in the exponential family with generalized linear mean functions of the form (+ x T) are mixed, according to a set of local weights called the \gating functions" depending on the predictor x. Here () is the inverse link function. We provide regularity conditions on the experts and on… (More)

In this paper we propose Bayesian and frequentist approaches to ecological inference, based on R 3 C contingency tables, including a covariate. The proposed Bayesian model extends the binomial-beta hierarchical model developed by KING, ROSEN and TANNER (1999) from the 2 3 2 case to the R 3 C case. As in the 2 3 2 case, the inferential procedure employs… (More)

|In mixtures-of-experts (ME) models, \experts" of generalized linear models are combined, according to a set of local weights called the \gating function". The invariant transformations of the ME probability density functions include the permutations of the expert labels and the translations of the parameters in the gating functions. Under certain… (More)

- Gary King, Ori Rosen, Martin A Tanner, Matrin A Tanner, Ori P Cm Rosen
- 2004

Ecological inference : new methodological strategies / edited

Previous researchers developed new learning architectures for sequential data by extending conventional hidden Markov models through the use of distributed state representations. Although exact inference and parameter estimation in these architectures is computationally intractable, Ghahramani and Jordan (1997) showed that approximate inference and… (More)