Martijn Rolloos

Learn More
Agrobacterium tumefaciens cells carrying a tumour inducing plasmid (Ti-plasmid) can transfer a defined region of transfer DNA (T-DNA) to plant cells as well as to yeast. This process of Agrobacterium-mediated transformation (AMT) eventually results in the incorporation of the T-DNA in the genomic DNA of the recipient cells. All available evidence indicates(More)
The overall light energy to biomass conversion efficiency of plant photosynthesis is generally regarded as low. Forward genetic screens in Arabidopsis have yielded very few mutants with substantially enhanced photochemistry. Here, we report the isolation of a novel Arabidopsis mutant with a high operating efficiency of Photosystem II (φPSII) and low(More)
Agrobacterium mediated transformation (AMT) has been embraced by biotechnologists as the technology of choice to introduce or alter genetic traits of plants. However, in plants it is virtually impossible to predetermine the integration site of the transferred T-strand unless one is able to generate a double stranded break (DSB) in the DNA at the site of(More)
The rapidly growing world population has a greatly increasing demand for plant biomass, thus creating a great interest in the development of methods to enhance the growth and biomass accumulation of crop species. In this study, we used zinc finger artificial transcription factor (ZF-ATF)-mediated genome interrogation to manipulate the growth characteristics(More)
  • 1