Martial Boggio-Pasqua

Learn More
Fluorescent proteins have been widely used as genetically encodable fusion tags for biological imaging. Recently, a new class of fluorescent proteins was discovered that can be reversibly light-switched between a fluorescent and a non-fluorescent state. Such proteins can not only provide nanoscale resolution in far-field fluorescence optical microscopy much(More)
We have performed excited-state dynamics simulations of a Photoactive Yellow Protein chromophore analogue in water. The results of the simulations demonstrate that in water the chromophore predominantly undergoes single-bond photoisomerization, rather than double-bond photoisomerization. Despite opposite charge distributions in the chromophore,(More)
We have performed ab initio CASSCF, CASPT2, and EOM-CCSD calculations on doubly deprotonated p-coumaric acid (pCA(2-)), the chromophore precursor of the photoactive yellow protein. The results of the calculations demonstrate that pCA(2-) can undergo only photoisomerization of the double bond. In contrast, the chromophore derivative with the acid replaced by(More)
  • 1