Learn More
Transcription factors (TFs) regulate the expression of genes through sequence-specific interactions with DNA-binding sites. However, despite recent progress in identifying in vivo TF binding sites by microarray readout of chromatin immunoprecipitation (ChIP-chip), nearly half of all known yeast TFs are of unknown DNA-binding specificities, and many(More)
Transcription factors (TFs) interact with specific DNA regulatory sequences to control gene expression throughout myriad cellular processes. However, the DNA binding specificities of only a small fraction of TFs are sufficiently characterized to predict the sequences that they can and cannot bind. We present a maximally compact, synthetic DNA sequence(More)
Most homeodomains are unique within a genome, yet many are highly conserved across vast evolutionary distances, implying strong selection on their precise DNA-binding specificities. We determined the binding preferences of the majority (168) of mouse homeodomains to all possible 8-base sequences, revealing rich and complex patterns of sequence specificity(More)
We developed a new DNA microarray-based technology, called protein binding microarrays (PBMs), that allows rapid, high-throughput characterization of the in vitro DNA binding-site sequence specificities of transcription factors in a single day. Using PBMs, we identified the DNA binding-site sequence specificities of the yeast transcription factors Abf1,(More)
Sequence preferences of DNA binding proteins are a primary mechanism by which cells interpret the genome. Despite the central importance of these proteins in physiology, development, and evolution, comprehensive DNA binding specificities have been determined experimentally for only a few proteins. Here, we used microarrays containing all 10-base pair(More)
Protein-binding microarray (PBM) technology provides a rapid, high-throughput means of characterizing the in vitro DNA-binding specificities of transcription factors (TFs). Using high-density, custom-designed microarrays containing all 10-mer sequence variants, one can obtain comprehensive binding-site measurements for any TF, regardless of its structural(More)
Circadian clocks provide an adaptive advantage by allowing organisms to anticipate daily and seasonal environmental changes [1, 2]. Eukaryotic oscillators rely on complex hierarchical networks composed of transcriptional and posttranslational regulatory circuits [3]. In Arabidopsis, current representations of the circadian clock consist of three or four(More)
PURPOSE To facilitate the identification of genes associated with cataract and other ocular defects, the authors developed and validated a computational tool termed iSyTE (integrated Systems Tool for Eye gene discovery; http://bioinformatics.udel.edu/Research/iSyTE). iSyTE uses a mouse embryonic lens gene expression data set as a bioinformatics filter to(More)
In the vertebrate neural tube, regional Sonic hedgehog (Shh) signaling invokes a time- and concentration-dependent induction of six different cell populations mediated through Gli transcriptional regulators. Elsewhere in the embryo, Shh/Gli responses invoke different tissue-appropriate regulatory programs. A genome-scale analysis of DNA binding by Gli1 and(More)
A transient inflammatory signal can initiate an epigenetic switch from nontransformed to cancer cells via a positive feedback loop involving NF-kappaB, Lin28, let-7, and IL-6. We identify differentially regulated microRNAs important for this switch and putative transcription factor binding sites in their promoters. STAT3, a transcription factor activated by(More)