Learn More
Transcription factors (TFs) regulate the expression of genes through sequence-specific interactions with DNA-binding sites. However, despite recent progress in identifying in vivo TF binding sites by microarray readout of chromatin immunoprecipitation (ChIP-chip), nearly half of all known yeast TFs are of unknown DNA-binding specificities, and many(More)
Most homeodomains are unique within a genome, yet many are highly conserved across vast evolutionary distances, implying strong selection on their precise DNA-binding specificities. We determined the binding preferences of the majority (168) of mouse homeodomains to all possible 8-base sequences, revealing rich and complex patterns of sequence specificity(More)
Circadian clocks provide an adaptive advantage by allowing organisms to anticipate daily and seasonal environmental changes [1, 2]. Eukaryotic oscillators rely on complex hierarchical networks composed of transcriptional and posttranslational regulatory circuits [3]. In Arabidopsis, current representations of the circadian clock consist of three or four(More)
Man and Stormo and Bulyk et al. recently presented their results on the study of the DNA binding affinity of proteins. In both of these studies the main conclusion is that the additivity assumption, usually applied in methods to search for binding sites, is not true. In the first study, the analysis of binding affinity data from the Mnt repressor protein(More)
We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot(More)
Numerous efforts are underway to determine gene regulatory networks that describe physical relationships between transcription factors (TFs) and their target DNA sequences. Members of paralogous TF families typically recognize similar DNA sequences. Knowledge of the molecular determinants of protein-DNA recognition by paralogous TFs is of central importance(More)
The UniPROBE (Universal PBM Resource for Oligonucleotide Binding Evaluation) database hosts data generated by universal protein binding microarray (PBM) technology on the in vitro DNA-binding specificities of proteins. This initial release of the UniPROBE database provides a centralized resource for accessing comprehensive PBM data on the preferences of(More)
Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro(More)
BACKGROUND Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. RESULTS We analyzed in(More)
Our group has recently developed a compact, universal protein binding microarray (PBM) that can be used to determine the binding preferences of transcription factors (TFs). This design represents all possible sequence variants of a given length k (i.e., all k-mers) on a single array, allowing a complete characterization of the binding specificities of a(More)