Learn More
When triggered appropriately, dental follicle cells are considered to be able to differentiate toward a cementoblast/osteoblast phenotype. However, factors and mechanisms regulating follicle cell differentiation remain undefined. This study focused on determining the ability of bone morphogenetic protein (BMP) 2 to promote the differentiation of follicle(More)
The recognition that periodontal regeneration can be achieved has resulted in increased efforts focused on understanding the mechanisms and factors required for restoring periodontal tissues so that clinical outcomes of such therapies are more predictable than those currently being used. In vitro models provide an excellent procedure for providing clues as(More)
BACKGROUND Bone morphogenetic protein (BMP)-7 is a potent bone-inducing factor and was shown to promote periodontal regeneration in vivo and in vitro; however, to our knowledge, the specific effect of BMP-7 on cementoblasts has not been defined. We aimed to investigate the effects of BMP-7 on cementoblasts, which are cells responsible for tooth(More)
Both periodontal ligament and gingival tissue are thought to harbor cells with the ability to stimulate periodontal regeneration, i.e., formation of new bone, cementum, and connective tissue attachment. To understand further the role of these cells in the regenerative process, we compared human periodontal ligament cells and gingival fibroblasts, both(More)
BACKGROUND Proper formation of cementum, a mineralized tissue lining the tooth root surface, is required for development of a functional periodontal ligament. Further, the presence of healthy cementum is considered to be an important criterion for predictable restoration of periodontal tissues lost as a consequence of disease. Despite the significance of(More)
Dentin sialoprotein (DSP), a 53 kDa glycoprotein, is believed to be present exclusively in dentin. Using rat and mouse digoxigenin labeled (DIG)-DSP and 35S-DSP riboprobes, and in situ hybridization techniques, we have studied the presence of DSP mRNA at specific developmental stages of dentinogenesis. In mouse and rat molars and incisors, DSP transcripts(More)
Periodontal regeneration is a complex process that requires coordinated responses from several cell types within the periodontium. It is generally accepted that the periodontal ligament (PDL) has a heterogeneous cell population, where some of the cells may be capable of differentiating into either cementoblasts or osteoblasts. Thus, it has been hypothesized(More)
Dentine sialoprotein (DSP), a 53-kDa acidic glycoprotein, is expressed by odontoblasts and secreted into the dentine extracellular matrix. Although little is known about its biological function, it might play a part in dentinogenesis. Because DSP has only been shown to occur in rat dentine, it is important to demonstrate its existence in another species.(More)
Members of the transforming growth factor superfamily are known to transduce signals via the activation of Smad proteins. Ligand binding to transmembrane cell surface receptors triggers the phosphorylation of pathway-specific Smads. These Smads then complex with Smad 4 and are translocated to the nucleus where they effect gene transcription. Smads 1 and 4(More)