Martha J. James

Learn More
In the context of transplantation, dendritic cells (DCs) can sensitize alloreactive T cells via two pathways. The direct pathway is initiated by donor DCs presenting intact donor MHC molecules. The indirect pathway results from recipient DCs processing and presenting donor MHC as peptide. This simple dichotomy suggests that T cells with direct and indirect(More)
The physiologic significance of MHC-peptide complex presentation by endothelial cells (ECs) to trafficking T lymphocytes remains unresolved. On the basis of our observation that cognate recognition of ECs enhanced transendothelial migration of antigen-specific T lymphocytes in vitro, we have proposed that by displaying antigenic peptides from the underlying(More)
The type I IFN family includes 14 closely related antiviral cytokines that are produced in response to viral infections. They bind to a common receptor, and have qualitatively similar biological activities. The physiological relevance of this redundancy is still unclear. In this study, we analyzed and compared the effects of two potent antiviral type I(More)
Due to their ability to inhibit antigen-induced T-cell activation in vitro and in vivo, anergic T cells can be considered part of the spectrum of immunoregulatory T lymphocytes. Here we report that both murine and human anergic T cells can impair the ability of parenchymal cells (including endothelial and epithelial cells) to establish cell-cell(More)
Urothelial cells have been prepared by a new method involving collagenase treatment of the lumen of a ureter. These cells have been identified as epithelial and successfully subcultured. In addition, we have observed that growth rate is significantly increased by the inclusion of an extract of bovine hypothalamus in the growth medium. This system for cell(More)
The recruitment of Ag-specific T cells to sites of inflammation is a crucial step in immune surveillance. Although the molecular interactions controlling T cell extravasation are relatively well characterized, the effects of these events on T cell function are still poorly understood. Using an in vitro model of transendothelial migration of human CD4(+)(More)
Due to their ability to inhibit antigen-induced T cell activation in vitro and in vivo, anergic T cells can be considered part of the spectrum of immunoregulatory T lymphocytes. Here we report that both murine and human anergic T cells can impair the ability of parenchymal cells (including endothelial and epithelial cells) to establish cell: cell(More)
  • 1