Marta Sosnowska

Learn More
Thin films of conducting molecularly imprinted polymers (MIPs) were prepared for simultaneous chronoamperometry (CA) and piezoelectric microgravimetry (PM) determination of several explosive nitroaromatic compounds (NTs) including 2,4,6-trinitrophenol (TNP), 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), and 2,4-dinitrotoluene (DNT). For that,(More)
We devised and prepared a conducting molecularly imprinted polymer (MIP) for human serum albumin (HSA) determination using semi-covalent imprinting. The bis(2,2'-bithien-5-yl)methane units constituted the MIP backbone. This MIP was deposited as a thin film on an Au electrode by oxidative potentiodynamic electropolymerization to fabricate an electrochemical(More)
A new conducting polymer of biotinylated bis(2,2'-bithien-5-yl)methane was prepared and applied as the recognition unit of two different biosensors for selective oligonucleotide determination using either electrochemical impedance spectroscopy (EIS) or piezoelectric microgravimetry (PM) for label-free analytical signal transduction. For preparation of this(More)
With an established procedure of molecular imprinting, a synthetic polymer receptor for the neopterin cancer biomarker was devised and used as a recognition unit of a potentiometric chemosensor. For that, bis-bithiophene derivatized with cytosine and bithiophene derivatized with boronic acid were used as functional monomers. The open-circuit potential (OCP)(More)
Recently, we presented a convenient method combining a deuterium-hydrogen exchange and electrospray mass spectrometry for studying high-pressure denaturation of proteins (Stefanowicz et al., Biosci Rep 2009; 30:91-99). Here, we present results of pressure-induced denaturation studies of an amyloidogenic protein-the wild-type human cystatin C (hCC) and its(More)
Two new bis(2,2'-bithienyl)methane derivatives, one with the zinc phthalocyanine substituent (ZnPc-S16) and the other with the 2-hydroxyethyl substituent (EtOH-S4), were synthesized to serve as functional monomers for biomimetic recognition of nicotine (Nic) by molecular imprinting. Formation of a pre-polymerization complex of the Nic template with ZnPc-S16(More)
A new strategy of simple, inexpensive, rapid, and label-free single-nucleotide-polymorphism (SNP) detection using robust chemosensors with piezomicrogravimetric, surface plasmon resonance, or capacitive impedimetry (CI) signal transduction is reported. Using these chemosensors, selective detection of a genetically relevant oligonucleotide under FIA(More)
Herein, direct determination of small RNAs is described using a functional-polymer modified genosensor. The analytical strategy adopted involves deposition by electropolymerization of biotinylated polythiophene films on the surface of miniaturized, disposable, gold screen-printed electrodes, followed by the layer-by-layer deposition of streptavidin, and(More)
A novel recognition unit of chemical sensor for selective determination of the inosine, renal disfunction biomarker, was devised and prepared. For that purpose, inosine-templated molecularly imprinted polymer (MIP) film was deposited on an extended-gate field-effect transistor (EG-FET) signal transducing unit. The MIP film was prepared by electrochemical(More)
The propensity of 5-selenocyanatouracil (SeCNU) to decomposition induced by attachment of electron was scrutinized with the G3B3 composite quantum-chemical method and radiolytic studies. Favorable thermodynamic (Gibbs free reaction energy of -13.65 kcal/mol) and kinetic (Gibbs free activation energy of 1.22 kcal/mol) characteristics revealed by the G3B3(More)