Marta Pasenkiewicz-Gierula

Learn More
Molecular dynamics (MD) simulations complement experimental methods in studies of the structure and dynamics of lipid bilayers. The choice of algorithms employed in this computational method represents a trade-off between the accuracy and real calculation time. The largest portion of the simulation time is devoted to calculation of long-range electrostatic(More)
The interactions of the neurotransmitter dopamine, and its precursor l-dopa, with membrane lipids were investigated through a set of molecular dynamic simulations with all atom resolution. The results obtained indicate that both dopamine and l-dopa have a pronounced association with the lipid head groups, predominantly mediated through H-bonds. As a result(More)
Lutein is present in the human retina and lens, where it plays a protective role. As lutein is associated with the lipid matrix of biomembranes, the role depends on its membrane location. Experimental studies predicted two orientations of lutein in a phosphatidylcholine (PC) bilayer: vertical and horizontal. Using a molecular dynamics simulation, we(More)
Magainin-2 is a natural peptide that kills bacteria at concentrations that are harmless to animal cells. Molecular modelling methods were applied to investigate basic mechanisms of magainin-2 amide (M2a) membrane selectiv-ity. Three computer models of a lipid matrix of either animal or bacterial membrane containing M2a were constructed and simulated.(More)
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been(More)
G protein-coupled receptors relay diverse extracellular signals into cells via a common mechanism, involving activation of cytosol G proteins. The mechanism underlies the actions of approximately 50% of all drugs. In this work, we focus on simulating three protein-ligand complexes of the neurohypophyseal hormone analog 4-OH-phenylacetyl- D-Y(Me)FQNRPR-NH2(More)
  • 1