Marta Llansola

Learn More
The aim of this work was to assess whether ammonia concentrations similar to the increase found in the brain of hyperammonemic rats (100 microM), impair N-methyl-D-aspartate (NMDA) receptor-mediated signal transduction. We first measured glutamate neurotoxicity, which in these neurons is mediated by activation of NMDA receptors, as an initial parameter(More)
Patients with hepatic encephalopathy (HE) may present different neurological alterations including impaired cognitive function and altered motor activity and coordination. HE may lead to coma and death. Many of these neurological alterations are the consequence of altered neurotransmission. Hyperammonemia is a main contributor to the alterations in(More)
Intellectual function is impaired in patients with hyperammonemia and hepatic encephalopathy. Chronic hyperammonemia with or without liver failure impairs the glutamate-nitric oxide-cGMP pathway function in brain in vivo and reduces extracellular cGMP in brain as well as the ability of rats to learn a Y maze conditional discrimination task. We hypothesized(More)
Patients with hepatic encephalopathy show altered motor function, psychomotor slowing, and hypokinesia, which are reproduced in rats with portacaval shunts (PCS). Increased extracellular glutamate in substantia nigra pars reticulata (SNr) is responsible for hypokinesia in PCS rats. The mechanisms by which liver failure leads to increased extracellular(More)
Acute intoxication with large doses of ammonia leads to rapid death. The main mechanism for ammonia elimination in brain is its reaction with glutamate to form glutamine. This reaction is catalyzed by glutamine synthetase and consumes ATP. In the course of studies on the molecular mechanism of acute ammonia toxicity, we have found that glutamine synthetase(More)
Cognitive function is impaired in patients with liver disease by unknown mechanisms. Long-term potentiation (LTP) in the hippocampus is considered the basis of some forms of learning and memory. The aims of this work were to assess (i) whether chronic liver failure impairs hippocampal LTP; (ii) if this impairment may be due to alterations in glutamatergic(More)
BACKGROUND/AIMS Patients with hepatic encephalopathy show altered motor function, psychomotor slowing and hypokinesia. The underlying mechanisms remain unclear. This work's aims were: (1) to analyse in rats with chronic liver failure due to portacaval shunt (PCS) the neurochemical alterations in the basal ganglia-thalamus-cortex circuits; (2) to correlate(More)
NMDA receptors modulate important cerebral processes such as synaptic plasticity, long-term potentiation, learning and memory, etc. NMDA receptors in cerebellum have specific characteristics that make their function and modulation different from those of NMDA receptors in other brain areas. In this and the accompanying review we summarize the information(More)
Exposure to aluminum (Al) produces neurotoxic effects in humans. However, the molecular mechanism of Al neurotoxicity remains unknown. Al interferes with glutamatergic neurotransmission and impairs the neuronal glutamate-nitric oxide-cyclic GMP (cGMP) pathway, especially in rats prenatally exposed to Al. The aim of this work was to assess whether Al(More)
Patients with liver diseases (e.g. cirrhosis) may present hepatic encephalopathy (HE), an alteration in cerebral function which is a consequence of previous failure of liver function. Patients with minimal or clinical HE present different levels of cognitive impairment. Hyperammonemia is considered a main contributor to the neurological alterations in HE.(More)