Learn More
The mismatch negativity (MMN) is a brain response to violations of a rule, established by a sequence of sensory stimuli (typically in the auditory domain) [Näätänen R. Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum; 1992]. The MMN reflects the brain's ability to perform automatic comparisons between consecutive stimuli and provides an(More)
Neuronal responses to stimuli, measured electrophysiologically, unfold over several hundred milliseconds. Typically, they show characteristic waveforms with early and late components. It is thought that early or exogenous components reflect a perturbation of neuronal dynamics by sensory input bottom-up processing. Conversely, later, endogenous components(More)
Using dynamic causal modelling (DCM), we have presented provisional evidence to suggest: (i) the mismatch negativity (MMN) is generated by self-organised interactions within a hierarchy of cortical sources [Garrido, M.I., Kilner, J.M., Kiebel, S.J., Stephan, K.E., Friston, K.J., 2007. Dynamic causal modelling of evoked potentials: a reproducibility study.(More)
Frontoparietal cortex is involved in the explicit processing (awareness) of stimuli. Frontoparietal activation has also been found in studies of subliminal stimulus processing. We hypothesized that an impairment of top-down processes, involved in recurrent neuronal message-passing and the generation of long-latency electrophysiological responses, might(More)
Dynamic causal modelling (DCM) has been applied recently to event-related responses (ERPs) measured with EEG/MEG. DCM attempts to explain ERPs using a network of interacting cortical sources and waveform differences in terms of coupling changes among sources. The aim of this work was to establish the validity of DCM by assessing its reproducibility across(More)
This article describes the use of dynamic causal modeling to test hypotheses about the genesis of evoked responses. Specifically, we consider the mismatch negativity (MMN), a well-characterized response to deviant sounds and one of the most widely studied evoked responses. There have been several mechanistic accounts of how the MMN might arise. It has been(More)
Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/EEG entails the inversion a full spatiotemporal model of(More)
The suppression of neuronal responses to a repeated event is a ubiquitous phenomenon in neuroscience. However, the underlying mechanisms remain largely unexplored. The aim of this study was to examine the temporal evolution of experience-dependent changes in connectivity induced by repeated stimuli. We recorded event-related potentials (ERPs) during(More)
We present a review of dynamic causal modeling (DCM) for magneto- and electroencephalography (M/EEG) data. DCM is based on a spatiotemporal model, where the temporal component is formulated in terms of neurobiologically plausible dynamics. Following an intuitive description of the model, we discuss six recent studies, which use DCM to analyze M/EEG and(More)
Dynamic causal modelling is an approach to characterising evoked responses as measured by magneto/electroencephalography (M/EEG). A dynamic causal model (DCM) is a spatiotemporal, generative network model for event-related fields/responses (ERP/ERF) data. Using Bayesian model inversion, one can compute the posterior distributions of the DCM's physiological(More)