Marta Dueñas

Learn More
The influence of gonadal steroids on insulin-like growth factor I (IGF-I)-like immunoreactivity was assessed in the rat arcuate nucleus, an area of the hypothalamus that regulates pituitary secretion. IGF-I-like immunoreactivity was observed in hypothalamic cells with the morphological aspects of tanycytes and astrocytes. The surface density of IGF-I-like(More)
Neurotrophic effects of estradiol and insulin-like growth factor-I were assessed in primary cultures from fetal rat hypothalamus. Cultured neurons were immunostained with an antibody for the microtubule-associated protein-2. While both estradiol and insulin-like growth factor-I increased the number of microtubule-associated protein-2-immunoreactive neurons(More)
Estradiol induces coordinated modifications in the extension of glial and neuronal processes in the arcuate nucleus of the hypothalamus of adult female rats. This hormonal effect results in natural fluctuations in the ensheathing of arcuate neurons by glial processes and these glial changes are linked to a remodelling of inhibitory GABAergic synapses during(More)
Among the numerous endocrine signals that affect the central nervous system, sex steroids play an important role. It has been recently postulated that part of the effects of these hormones on the brain may be mediated by trophic factors, such as insulin-like growth factor I (IGF-I). Both estradiol and IGF-I increase the survival and differentiation of(More)
Recent evidence indicates that, in addition to their well known effects on neurons, gonadal steroids may exert part of their neural effects through astroglia. In adult female rats astroglia participate in the phasic remodelling of synapses that takes place during the estrous cycle in the arcuate nucleus of the hypothalamus under the influence of estradiol.(More)
Missense mutations in TP53 gene promote metastasis in human tumours. However, little is known about the complete loss of function of p53 in tumour metastasis. Here we show that squamous cell carcinomas generated by the specific ablation of Trp53 gene in mouse epidermis are highly metastatic. Biochemical and genome-wide mRNA and miRNA analyses demonstrated(More)
NANOG is a key pluripotency factor in embryonic stem cells that is frequently expressed in squamous cell carcinomas (SCCs). However, a direct link between NANOG and SCCs remains to be established. Here, we show that inducible overexpression of NANOG in mouse skin epithelia favours the malignant conversion of skin papillomas induced by chemical(More)
BACKGROUND The epidermal specific ablation of Trp53 gene leads to the spontaneous development of aggressive tumors in mice through a process that is accelerated by the simultaneous ablation of Rb gene. Since alterations of p53-dependent pathway are common hallmarks of aggressive, poor prognostic human cancers, these mouse models can recapitulate the(More)
Continuous cell renewal in mouse epidermis is at the expense of a pool of pluripotent cells that lie in a well defined niche in the hair follicle known as the bulge. To identify mechanisms controlling hair follicle stem cell homeostasis, we developed a strategy to isolate adult bulge stem cells in mice and to define their transcriptional profile. We(More)
Long non-coding RNAs (lncRNAs) have been claimed as key molecular players in gene expression regulation, being involved in diverse epigenetic processes. They are aberrantly expressed in various tumors, but their exact role in bladder cancer is still obscure. We have recently found a major role of the Polycomb repression complex in recurrence of(More)