Marta C. González

Learn More
Despite their importance for urban planning, traffic forecasting and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited owing to the lack of tools to monitor the time-resolved location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is(More)
Introduced in its contemporary form in 1946 (ref. 1), but with roots that go back to the eighteenth century, the gravity law is the prevailing framework with which to predict population movement, cargo shipping volume and inter-city phone calls, as well as bilateral trade flows between nations. Despite its widespread use, it relies on adjustable parameters(More)
Novel aspects of human dynamics and social interactions are investigated by means of mobile phone data. Using extensive phone records resolved in both time and space, we study the mean collective behavior at large scales and focus on the occurrence of anomalous events. We discuss how these spatiotemporal anomalies can be described using standard percolation(More)
Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the(More)
As vehicle manufacturers continue to increase their emphasis on safety with advanced driver-assistance systems (ADASs), we propose a device that is not only already in abundance but portable enough as well to be one of the most effective multipurpose devices that are able to analyze and advise on safety conditions. Mobile smartphones today are equipped with(More)
In this work, we present three classes of methods to extract information from triangulated mobile phone signals, and describe applications with different goals in spatiotemporal analysis and urban modeling. Our first challenge is to relate extracted information from phone records (i.e., a set of time-stamped coordinates estimated from signal strengths) with(More)
Understanding the spatiotemporal distribution of people within a city is crucial to many planning applications. Obtaining data to create required knowledge, currently involves costly survey methods. At the same time ubiquitous mobile sensors from personal GPS devices to mobile phones are collecting massive amounts of data on urban systems. The locations,(More)
We investigate the clustering coefficient in bipartite networks where cycles of size three are absent and therefore the standard definition of clustering coefficient cannot be used. Instead, we use another coefficient given by the fraction of cycles with size four, showing that both coefficients yield the same clustering properties. The new coefficient is(More)
Human mobility is a key component of large-scale spatial-transmission models of infectious diseases. Correctly modeling and quantifying human mobility is critical for improving epidemic control, but may be hindered by data incompleteness or unavailability. Here we explore the opportunity of using proxies for individual mobility to describe commuting flows(More)