Learn More
RegulonDB is the internationally recognized reference database of Escherichia coli K-12 offering curated knowledge of the regulatory network and operon organization. It is currently the largest electronically-encoded database of the regulatory network of any free-living organism. We present here the recently launched RegulonDB version 5.0 radically(More)
The EcoCyc database (http://EcoCyc.org/) is a comprehensive source of information on the biology of the prototypical model organism Escherichia coli K12. The mission for EcoCyc is to contain both computable descriptions of, and detailed comments describing, all genes, proteins, pathways and molecular interactions in E.coli. Through ongoing manual curation,(More)
RegulonDB (http://regulondb.ccg.unam.mx/) is the primary reference database offering curated knowledge of the transcriptional regulatory network of Escherichia coli K12, currently the best-known electronically encoded database of the genetic regulatory network of any free-living organism. This paper summarizes the improvements, new biology and new features(More)
RegulonDB is the primary database of the major international maintained curation of original literature with experimental knowledge about the elements and interactions of the network of transcriptional regulation in Escherichia coli K-12. This includes mechanistic information about operon organization and their decomposition into transcription units (TUs),(More)
BACKGROUND Escherichia coli is the model organism for which our knowledge of its regulatory network is the most extensive. Over the last few years, our project has been collecting and curating the literature concerning E. coli transcription initiation and operons, providing in both the RegulonDB and EcoCyc databases the largest electronically encoded(More)
The goal of most programs developed to find transcription factor binding sites (TFBSs) is the identification of discrete sequence motifs that are significantly over-represented in a given set of sequences where a transcription factor (TF) is expected to bind. These programs assume that the nucleotide conservation of a specific motif is indicative of a(More)
  • 1