Martín A Mosquera

  • Citations Per Year
Learn More
Using the Runge-Gross theorem that establishes the foundation of time-dependent density functional theory, we prove that for a given electronic Hamiltonian, choice of initial state, and choice of fragmentation, there is a unique single-particle potential (dubbed time-dependent partition potential) which, when added to each of the preselected fragment(More)
We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic(More)
The exchange-correlation (XC) local density approximation (LDA) is the original density functional used to investigate the electronic structure of molecules and solids within the formulation of Kohn and Sham. The LDA is fundamental for the development of density-functional approximations. In this work we consider the generalized Kohn-Sham (GKS) theory of(More)
Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial(More)
Conceiving a molecule as being composed of smaller molecular fragments, or subunits, is one of the pillars of the chemical and physical sciences and leads to productive methods in quantum chemistry. Using a fragmentation scheme, efficient algorithms can be proposed to address problems in the description of chemical bond formation and breaking. We present a(More)
Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to(More)
  • 1