Learn More
Abdominal-class homeodomain-containing (Hox) factors form multimeric complexes with TALE-class homeodomain proteins (Pbx, Meis) to regulate tissue morphogenesis and skeletal development. Here we have established that Pbx1 negatively regulates Hoxa10-mediated gene transcription in mesenchymal cells and identified components of a Pbx1 complex associated with(More)
Genetic studies show that Msx2 and Dlx5 homeodomain (HD) proteins support skeletal development, but null mutation of the closely related Dlx3 gene results in early embryonic lethality. Here we find that expression of Dlx3 in the mouse embryo is associated with new bone formation and regulation of osteoblast differentiation. Dlx3 is expressed in osteoblasts,(More)
We present an overview of Runx involvement in regulatory mechanisms that are requisite for fidelity of bone cell growth and differentiation, as well as for skeletal homeostasis and the structural and functional integrity of skeletal tissue. Runx-mediated control is addressed from the perspective of support for biological parameters of skeletal gene(More)
CCAAT/enhancer-binding proteins (C/EBP) are critical determinants for cellular differentiation and cell type-specific gene expression. Their functional roles in osteoblast development have not been determined. We addressed a key component of the mechanisms by which C/EBP factors regulate transcription of a tissue-specific gene during osteoblast(More)
Heterotrimeric G-proteins transduce signals from heptahelical transmembrane receptors to different effector systems, regulating diverse complex intracellular pathways and functions. In brain, facilitation of depolarization-induced neurotransmitter release for synaptic transmission is mediated by Gsalpha and Gqalpha. To identify effectors for(More)
Nucleic acids and regulatory proteins are compartmentalized in microenvironments within the nucleus. This subnuclear organization may support convergence and the integration of physiological signals for the combinatorial control of gene expression, DNA replication and repair. Nuclear organization is modified in many cancers. There are cancer-related changes(More)
Nuclear components are functionally linked with the dynamic temporal and spatial compartmentalization, sorting and integration of regulatory information to facilitate its selective use. For example, the subnuclear targeting of transcription factors to punctate sites in the interphase nucleus mechanistically couples chromatin remodelling and the execution of(More)
The regulatory machinery that governs genetic and epigenetic control of gene expression is compartmentalized in nuclear microenvironments. Temporal and spatial parameters of regulatory complex organization and assembly are functionally linked to biological control and are compromised with the onset and progression of tumorigenesis providing a novel platform(More)
N-methyl-D-aspartate receptors (NMDARs) are known to regulate axonal refinement and dendritic branching. However, because NMDARs are abundantly present as tri-heteromers (e.g., NR1/NR2A/NR2B) during development, the precise role of the individual subunits NR2A and NR2B in these processes has not been elucidated. Ventral spinal cord neurons (VSCNs) provide a(More)
Development of the osteoblast phenotype requires transcriptional mechanisms that regulate induction of a program of temporally expressed genes. Key components of gene activation, repression, and responsiveness to physiologic mediators require remodeling of the chromatin structure of a gene that renders promoter elements competent for the assembly of(More)