Marlon Walker

Learn More
Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop(More)
We have created a molecule that forms self-assembled monolayers (SAMs) on Au, possessing the characteristics for inhibition of nonspecific protein adsorption, i.e., uniformly distributed, loosely packed, conformationally mobile, hydrated ethylene oxide (EO) chains of near optimal packing densities. SAMs of the bipodal molecule(More)
This study compared the effectiveness of an acid solution and an acid gel in etching the facial surfaces of primary anterior teeth. Comparisons included: (1) microscopic examination of the quality of etched enamel surfaces, (2) microscopic examination of the formation and penetration of resin tags into the etched surface, and (3) mechanical tests of the(More)
Nanoparticles adsorbed onto the surface of a drop can fully encapsulate the liquid, creating a robust and durable soft solid with superhydrophobic characteristics referred to as a liquid marble. Artificially created liquid marbles have been studied for about a decade but are already utilized in some hair and skin care products and have numerous other(More)
Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial(More)
Surfaces with special wetting properties not only can efficiently repel or attract liquids such as water and oils but also can prevent formation of biofilms, ice, and clathrate hydrates. Predicting the wetting properties of these special surfaces requires detailed knowledge of the composition and geometry of the interfacial region between the droplet and(More)
Self-assembled monolayers (SAMs) of the disulfide [S(CH2CH2O)6CH3]2 ([S(EO)6]2) on Au from 95% ethanol and from 100% water are described. Spectroscopic ellipsometry and reflection-absorption infrared spectroscopy indicate that the [S(EO)6]2 films are similar to the disordered films of HS(CH2CH2O)6CH3 ((EO)6) and HS(CH2)3O(CH2CH2O)5CH3 (C3EO5) at their(More)
We present a facile strategy to modify poly(dopamine) (PDA)-coated substrates. Using thiol-terminated short chain ethylene oxide oligomers (OEG) under aqueous conditions, we explore the creation of a model surface exhibiting resistance to nonspecific protein absorption (RPA) by engineering the surface properties of a PDA adlayer. Surprisingly,(More)
The adhesion between poly(dimethylsiloxane) (PDMS) hemispheres coated with layer-by-layer (LbL) assemblies of polyelectrolytes and rigid, planar substrates was investigated using Johnson, Kendall, and Roberts (JKR) contact mechanics. Measurements were performed against amine-functionalized glass slides both in air and in aqueous solutions of controlled pH.(More)
Protein corona formed on nanomaterial surfaces play an important role in the bioavailability and cellular uptake of nanomaterials. Modification of surfaces with oligoethylene glycols (OEG) are a common way to improve the resistivity of nanomaterials to protein adsorption. Short-chain ethylene oxide (EO) oligomers have been shown to improve the protein(More)