Learn More
The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory(More)
RATIONALE Tissue engineering may provide advanced in vitro models for drug testing and, in combination with recent induced pluripotent stem cell technology, disease modeling, but available techniques are unsuitable for higher throughput. OBJECTIVE Here, we present a new miniaturized and automated method based on engineered heart tissue (EHT). METHODS(More)
Cortical atrophy as demonstrated by measurement of cortical thickness (CT) is a hallmark of various neurodegenerative diseases. In the wake of an acute ischemic stroke, brain architecture undergoes dynamic changes that can be tracked by structural and functional magnetic resonance imaging studies as soon as 3 months after stroke. In this study, we measured(More)
In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of(More)
Complex movements require the interplay of local activation and interareal communication of sensorimotor brain regions. This is reflected in a decrease of task-related spectral power over the sensorimotor cortices and an increase in functional connectivity predominantly in the upper alpha band in the electroencephalogram (EEG). In the present study,(More)
Functional imaging studies have argued that interactions between cortical motor areas and the cerebellum are relevant for motor output and recovery processes after stroke. However, the impact of the underlying structural connections is poorly understood. To investigate this, diffusion-weighted brain imaging was conducted in 26 well-characterized chronic(More)
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and(More)
BACKGROUND AND PURPOSE Ischemic strokes with motor deficits lead to widespread changes in neural activity and interregional coupling between primary and secondary motor areas. Compared with frontal circuits, the knowledge is still limited to what extent parietal cortices and their interactions with frontal motor areas undergo plastic changes and might(More)
Corticocortical interactions between the primary motor cortex, the ventral premotor cortex and posterior parietal motor areas, such as the anterior and caudal intraparietal sulcus, are relevant for skilled voluntary hand function. It remains unclear to what extent these brain regions and their interactions also contribute to basic motor functions after(More)
Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of(More)