Marlen Kolbe

Learn More
Mesenchymal stem cells (MSC) from bone marrow and outgrowth endothelial cells (OEC) from peripheral blood are considered as attractive cell types for applications in regenerative medicine aiming to build up complex vascularized tissue-engineered constructs. MSC provide several advantages such as the potential to differentiate to osteoblasts and to support(More)
In the present study we assessed the potential of human outgrowth endothelial cells (OEC), a subpopulation within endothelial progenitor cell cultures, to support the vascularization of a complex tissue engineered construct for bone. OEC cultured on starch polycaprolactone fiber meshes (SPCL) in monoculture retained their endothelial functionality and(More)
A number of previous studies documented the angiogenic potential of outgrowth endothelial cells in vitro and in vivo and provided evidence that therapeutic success could depend on coculture or coimplantation strategies. Thus, deeper insight into the molecular mechanisms underlying this pro-angiogenic effect of cocultures might provide new translational(More)
Endothelial progenitor cells from peripheral blood or cord blood are attracting increasing interest as a potential cell source for cellular therapies aiming to enhance the neovascularization of tissue engineered constructs or ischemic tissues. The present review focus on a specific population contained in endothelial progenitor cell cultures designated as(More)
An effective isolation protocol for outgrowth endothelial cells (OEC) resulting in higher cell numbers and a reduced expansion time would facilitate the therapeutical application. In this study a standard protocol based on the isolation of mononuclear cells from adult peripheral blood was modified by adding a passaging step 7 days after the isolation. OEC(More)
Since the original work by Mott, the low efficiency of electron spin polarimeters, remaining orders of magnitude behind optical polarimeters, has prohibited many fundamental experiments. Here we report a solution to this problem using a novel concept of multichannel spin-polarization analysis that provides a stunning increase in efficiency by 4 orders of(More)
Introduction Co-culture systems consisting of endothelial cells and osteoblasts represent a promising approach to favour the formation of a stable vasculature. Additional treatment of co-cultures with growth factors or morphogens might accelerate and improve the bone repair process and furthermore might be useful for new therapeutic applications. Based on(More)
  • 1