Learn More
Functional MRI (fMRI) during electrical somatosensory stimulation of the rat forepaw is a widely used model to investigate the functional organization of the somatosensory cortex or to study the underlying mechanisms of the blood oxygen level-dependent (BOLD) response. In reality, somatosensory stimuli have complex timing relationships and are of long(More)
L1 is a neural cell adhesion molecule mainly involved in axon guidance and neuronal migration during brain development. Mutations in the human L1 gene give rise to a complex clinical picture, with mental retardation, neurologic abnormalities and a variable degree of hydrocephalus. Recently, a transgenic mouse model with a targeted null mutation in the L1(More)
At present, resting state functional MRI (rsfMRI) is increasingly used in human neuropathological research. The present study aims at implementing rsfMRI in mice, a species that holds the widest variety of neurological disease models. Moreover, by acquiring rsfMRI data with a comparable protocol for anesthesia, scanning and analysis, in both rats and mice(More)
The neurophysiology of the rodent visual system has mainly been investigated by invasive and ex-vivo techniques providing fragmented data. This area of research has been deprived of functional MRI studies based on blood oxygenation level dependent (BOLD) contrast, which allows a whole brain approach with a high spatial and temporal resolution. In the(More)
Injection of manganese (Mn(2+)), a paramagnetic tract tracing agent and calcium analogue, into the high vocal center of starlings labeled within a few hours the nucleus robustus archistriatalis and area X as observed by in vivo magnetic resonance imaging. Structures highlighted by Mn(2+) accumulation assumed the expected tri-dimensional shape of the nucleus(More)
Diffusion kurtosis imaging (DKI) is a new magnetic resonance imaging (MRI) model that describes the non-Gaussian diffusion behavior in tissues. It has recently been shown that DKI parameters, such as the radial or axial kurtosis, are more sensitive to brain physiology changes than the well-known diffusion tensor imaging (DTI) parameters in several white and(More)
Nowadays, electroencephalography signals can be acquired from a patient lying in a magnetic resonance imaging system. It is even possible to acquire EEG signals during an MR imaging sequence. However, such EEG signals are severely distorted by artifacts originating from various effects (e.g., MR gradients, ECG). In this paper, a simple method is presented(More)
With diffusion tensor imaging, the diffusion of water molecules through brain structures is quantified by parameters, which are estimated assuming monoexponential diffusion-weighted signal attenuation. The estimated diffusion parameters, however, depend on the diffusion weighting strength, the b-value, which hampers the interpretation and comparison of(More)
White matter (WM) fiber tractography (i.e., the reconstruction of the 3D architecture of WM fiber pathways) is known to be an important application of diffusion tensor magnetic resonance imaging (DT-MRI). For the quantitative evaluation of several fiber-tracking properties, such as accuracy, noise sensitivity, and robustness, synthetic ground-truth DT-MRI(More)
Truly simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) were registered in curarized rats injected with convulsive doses of pentylenetetrazol (PTZ, 65 mg/kg, sc). Rigorous control of physiological parameters like body temperature and ventilation with control of blood gasses helped to avoid potential interference(More)