Marleen Vande Woestyne

Learn More
Bile salt hydrolase (BSH) activity was shown to be constitutive and substrate-specific: the BSH isogenic Lactobacillus plantarum wild type (LP80 WT) and BSH overproducing LP80 (pCBH1) strains preferentially hydrolysed glycodeoxycholic acid (GDCA), whereas the hamster Lact. animalis isolates H362 and H364 showed a higher affinity for taurodeoxycholic acid(More)
Pseudomonas roseus fluorescens produces, besides the Fe chelator proferrorosamine A, Fe -chelating compounds, called siderophores. The production of proferrorosamine A and siderophores by P. roseus fluorescens appears to be controlled in a similar way by the concentration of available iron and by the concentration of dissolved oxygen. The higher the(More)
Azotobacter vinelandii strain UA22 was produced by pTn5luxAB mutagenesis, such that the promoterless luxAB genes were transcribed in an iron-repressible manner. Tn5luxAB was localized to a fragment of chromosomal DNA encoding the thrS, infC, rpmI, rplT, pheS and pheT genes, with Tn5 inserted in the 3'-end of pheS. The isolation of this mutation in an(More)
Iron complexation was investigated as a possible tool to give lactobacilli a competitive advantage over clostridia. The iron complexing substance tested, i.e. 2,2'-dipyridyl, was not toxic itself for clostridia, but its addition to a mixed culture of lactobacilli and clostridia resulted in a strong ecological advantage of the lactobacilli.
The microbial chelating compound proferrorosamine A, produced by Pseudomonas roseus fluorescens, formed a complex with Fe2+ of which the apparent stability constant was found to be 10(23). The following order of increasing stability constants of metal complexes with proferrorosamine was established as: Ba2+, Ca2+, Mg2+, Mn2+ less than Hg2+ less than Zn2+(More)
  • 1