Markus Weiler

Learn More
The cytokine transforming growth factor (TGF)-beta, by virtue of its immunosuppressive and promigratory properties, has become a major target for the experimental treatment of human malignant gliomas. Here we characterize the effects of a novel TGF-beta receptor (TGF-betaR) I kinase inhibitor, SD-208, on the growth and immunogenicity of murine SMA-560 and(More)
In order to stabilize changes in synaptic strength, neurons activate a program of gene expression that results in alterations of their molecular composition and structure. Here we demonstrate that Fnk and Snk, two members of the polo family of cell cycle associated kinases, are co-opted by the brain to serve in this program. Stimuli that produce synaptic(More)
Many patients with malignant gliomas do not respond to alkylating agent chemotherapy. Alkylator resistance of glioma cells is mainly mediated by the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). Epigenetic silencing of the MGMT gene by promoter methylation in glioma cells compromises this DNA repair mechanism and increases(More)
Cancer stem cells (CSCs) have been suggested as potential therapeutic targets for treating malignant tumors, but the in vivo supporting evidence is still missing. Using a GFP reporter driven by the promoter of the nuclear receptor tailless (Tlx), we demonstrate that Tlx(+) cells in primary brain tumors are mostly quiescent. Lineage tracing demonstrates that(More)
Conditionally BCL-xL-overexpressing LNT-229 Tet-On glioma cell clones were generated to investigate whether the ‘antiapoptosis phenotype’ and the ‘motility phenotype’ mediated by BCL-2 family proteins in glioma cells could be separated. BCL-xL induction led to an immediate and concentration-dependent protection of LNT-229 cells from apoptosis. BCL-xL(More)
In order to stabilize changes in synaptic strength, neurons activate a program of gene expression that results in alterations of their molecular composition and structure. Here we demonstrate that Fnk and Snk, two members of the polo family of cell cycle associated kinases, are co-opted by the brain to serve in this program. Stimuli that produce synaptic(More)
Transforming growth factor (TGF)-beta is the key molecule implicated in impaired immune function in human patients with malignant gliomas. Here we report that patients with glioblastoma, the most common and lethal type of human glioma, show decreased expression of the activating immunoreceptor NKG2D in CD8(+) T and natural killer (NK) cells. TGF-beta is(More)
PURPOSE To investigate the ability of diffusion-tensor imaging (DTI) and T2 to help detect the mildest nerve lesion conceivable, that is, subclinical ulnar neuropathy at the elbow. MATERIALS AND METHODS This prospective study was approved by the institutional ethics board. Written informed consent was obtained from all participants. Magnetic resonance(More)
Insights into the molecular pathogenesis of glioblastoma have not yet resulted in relevant clinical improvement. With standard therapy, which consists of surgical resection with concomitant temozolomide in addition to radiotherapy followed by adjuvant temozolomide, the median duration of survival is 12-14 months. Therefore, the identification of novel(More)
Hypermethylation in the promoter region of the MGMT gene encoding the DNA repair protein O(6)-methylguanine-DNA methyltransferase is among the most important prognostic factors for patients with glioblastoma and predicts response to treatment with alkylating agents like temozolomide. Hence, the MGMT status is widely determined in most clinical trials and(More)