Markus Siegel

Learn More
Goal-directed behavior requires the continuous monitoring and dynamic adjustment of ongoing actions. Here, we report a direct coupling between the event-related electroencephalogram (EEG), functional magnetic resonance imaging (fMRI), and behavioral measures of performance monitoring in humans. By applying independent component analysis to EEG signals(More)
Little is known about the brain-wide correlation of electrophysiological signals. We found that spontaneous oscillatory neuronal activity exhibited frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of(More)
Cognition results from interactions among functionally specialized but widely distributed brain regions; however, neuroscience has so far largely focused on characterizing the function of individual brain regions and neurons therein. Here we discuss recent studies that have instead investigated the interactions between brain regions during cognitive(More)
Oscillatory neuronal synchronization, within and between cortical areas, may mediate the selection of attended visual stimuli. However, it remains unclear at and between which processing stages visuospatial attention modulates oscillatory synchronization in the human brain. We thus combined magnetoencephalography (MEG) in a spatially cued motion(More)
The ability to hold multiple objects in memory is fundamental to intelligent behavior, but its neural basis remains poorly understood. It has been suggested that multiple items may be held in memory by oscillatory activity across neuronal populations, but yet there is little direct evidence. Here, we show that neuronal information about two objects held in(More)
Normal brain function requires the dynamic interaction of functionally specialized but widely distributed cortical regions. Long-range synchronization of oscillatory signals has been suggested to mediate these interactions within large-scale cortical networks, but direct evidence is sparse. Here we show that oscillatory synchronization is organized in such(More)
Two major non-invasive techniques in cognitive neuroscience, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. Recent hardware and software developments have made it feasible to acquire EEG and fMRI data simultaneously. We emphasize the potential(More)
Simple perceptual decisions are ideally suited for studying the sensorimotor transformations underlying flexible behavior. During perceptual detection, a noisy sensory signal is converted into a behavioral report of the presence or absence of a perceptual experience. Here, we used magnetoencephalography (MEG) to link the dynamics of neural population(More)
During the past decade, numerous studies have demonstrated stimulus-specific synchronization of neuronal activity in the gamma-frequency range. However, it appears that the different analyses are based on widely different assumptions about which frequency range to investigate. Therefore, the term "gamma-synchronization" refers to an inhomogeneous spectrum(More)
Oscillations are a pervasive feature of neuronal activity in the cerebral cortex. Here, we propose a framework for understanding local cortical oscillation patterns in cognition: two classes of network interactions underlying two classes of cognitive functions produce different local oscillation patterns. Local excitatory-inhibitory interactions shape(More)