Markus Schwaninger

Learn More
Activation of the transcription factor nuclear factor-kappaB (NF-kappaB) has been suggested to participate in chronic disorders, such as diabetes and its complications. In contrast to the short and transient activation of NF-kappaB in vitro, we observed a long-lasting sustained activation of NF-kappaB in the absence of decreased IkappaBalpha in mononuclear(More)
Little is known about the mechanisms converting psychosocial stress into cellular dysfunction. Various genes, up-regulated in atherosclerosis but also by psychosocial stress, are controlled by the transcription factor nuclear factor kappaB (NF-kappaB). Therefore, NF-kappaB is a good candidate to convert psychosocial stress into cellular activation.(More)
In ischemic stroke, the necrotic core is surrounded by a zone of inflammation, in which delayed cell death aggravates the initial insult. Here, we provide evidence that the receptor for advanced glycation end products (RAGE) functions as a sensor of necrotic cell death and contributes to inflammation and ischemic brain damage. The RAGE ligand high mobility(More)
Two-pore domain potassium (K2P) channel expression is believed to underlie the developmental emergence of a potassium leak conductance [IK(SO)] in cerebellar granule neurons (CGNs), suggesting that K2P function is an important determinant of the input conductance and resting membrane potential. To investigate the role that different K2P channels may play in(More)
BACKGROUND AND PURPOSE The potential neuroprotective effect of the granulocyte colony-stimulating factor (G-CSF) after glutamate-induced excitotoxicity in cell culture and after focal cerebral ischemia in rats was studied. We hypothesized the existence of the G-CSF receptor (G-CSFR) as a main G-CSF effector on neurons, and immunohistochemistry,(More)
The transcription factor NF-kappaB is a key regulator of hundreds of genes involved in cell survival and inflammation. There is ample evidence that NF-kappaB is activated in cerebral ischemia, mainly in neurons. Despite its well known role as an antiapoptotic factor, in cerebral ischemia NF-kappaB contributes to neuronal cell death, at least if the ischemia(More)
The transcription factor NF-kappaB is a regulator of cell death or survival. To investigate the role of NF-kappaB in neuronal cell death, we studied its activation in a rodent model of stroke. In the ischemic hemisphere, NF-kappaB was activated, as determined by increased expression of an NF-kappaB-driven reporter transgene, nuclear translocation of(More)
The transcription factor nuclear factor kappaB (NF-kappaB) is well known for its antiapoptotic action. However, in some disorders, such as cerebral ischemia, a proapoptotic function of NF-kappaB has been demonstrated. To analyze which subunit of NF-kappaB is functional in cerebral ischemia, we induced focal cerebral ischemia in mice with a germline deletion(More)
BACKGROUND AND PURPOSE Pretreatment with intraventricular brain-derived neurotrophic factor (BDNF) reduces ischemic damage after focal cerebral ischemia. In this experiment we studied the effect of intravenous BDNF delivered after focal cerebral ischemia on neurological outcome, infarct size, and expression of proapoptotic and antiapoptotic proteins Bax and(More)
Molecular events that result in loss of pain perception are poorly understood in diabetic neuropathy. Our results show that the receptor for advanced glycation end products (RAGE), a receptor associated with sustained NF-kappaB activation in the diabetic microenvironment, has a central role in sensory neuronal dysfunction. In sural nerve biopsies, ligands(More)