Learn More
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t We study phase field equations in perforated domains for arbitrary(More)
We present a new methodology for studying non-Hamiltonian nonlinear systems based on an information theoretical extension of a renormalization group technique using a modified maximum entropy principle. We obtain a rigorous dimensionally reduced description for such systems. The neglected degrees of freedom by this reduction are replaced by a systematically(More)
Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media. Homogenization analysis is performed for a two-component periodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a(More)
The Open University's repository of research publications and other research outputs A new mode reduction strategy for the generalized Kuramoto–Sivashinsky equation Journal Article Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data(More)
Effective Poisson–Nernst–Planck (PNP) equations are derived for ion transport in charged porous media under forced convection (periodic flow in the frame of the mean velocity) by an asymptotic multiscale expansion with drift. The homogenized equations provide a model-ing framework for engineering while also addressing fundamental questions about(More)
  • 1