#### Filter Results:

- Full text PDF available (3)

#### Publication Year

2012

2016

- This year (0)
- Last 5 years (8)
- Last 10 years (10)

#### Publication Type

#### Co-author

#### Journals and Conferences

Learn More

- Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, Michal Pilipczuk
- IEEE 54th Annual Symposium on Foundations of…
- 2013

We give an algorithm that for an input n-vertex graph G and integer k > 0, in time O(ckn) either outputs that the tree width of G is larger than k, or gives a tree decomposition of G of width at most… (More)

- Pål Grønås Drange, Markus S. Dregi, +8 authors Somnath Sikdar
- STACS
- 2016

We prove that for every positive integer r and for every graph class G of bounded expansion, the r-Dominating Set problem admits a linear kernel on graphs from G. Moreover, when G is only assumed to… (More)

- Pål Grønås Drange, Markus S. Dregi, Pim van 't Hof
- Algorithmica
- 2016

The Weighted Vertex Integrity (wVI) problem takes as input an n-vertex graph G, a weight function $$w:V(G)\rightarrow {\mathbb {N}}$$w:V(G)→N, and an integer p. The task is to decide if there exists… (More)

We study the computational complexity of the graph modification problems Threshold Editing and Chain Editing, adding and deleting as few edges as possible to transform the input into a threshold (or… (More)

- Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, Michal Pilipczuk
- SIAM J. Comput.
- 2016

We give an algorithm that for an input n-vertex graph G and integer k > 0, in time 2n either outputs that the treewidth of G is larger than k, or gives a tree decomposition of G of width at most 5k +… (More)

- Pål Grønås Drange, Markus S. Dregi, Pim van 't Hof
- ArXiv
- 2014

- Pål Grønås Drange, Markus S. Dregi, Pim van 't Hof
- ISAAC
- 2014

- Markus S. Dregi, Daniel Lokshtanov
- ICALP
- 2014

The bandwidth of a n-vertex graph G is the smallest integer b such that there exists a bijective function f : V (G) → {1, ..., n}, called a layout of G, such that for every edge uv ∈ E(G), |f(u)−… (More)

- Pål Grønås Drange, Markus S. Dregi, R. B. Sandeep
- LATIN
- 2016

- Markus S. Dregi
- 2012

Motivated by a search game, Fomin, Heggernes and Telle [Algorithmica, 2005] defined the graph parameter treespan, a generalization of the well studied parameter bandwidth. Treespan is the maximum… (More)

- ‹
- 1
- ›