Learn More
The primary (SI) and secondary (SII) somatosensory cortices have been shown to participate in human pain processing. However, in humans it is unclear how SI and SII contribute to the encoding of nociceptive stimulus intensity. Using magnetoencephalography (MEG) we recorded responses in SI and SII in eight healthy humans to four different intensities of(More)
Cerebral processing of pain has been shown to involve primary (SI) and secondary (SII) somatosensory cortices. However, the temporal activation pattern of these cortices in nociceptive processing has not been demonstrated so far. We therefore used whole-head magnetoencephalography to record cortical responses to cutaneous laser stimuli in six healthy human(More)
The perception of pain is sensitive to various mental processes such as the feelings and beliefs that someone has about pain. It is therefore not exclusively driven by the noxious input. Attentional modulation involving the descending pain modulatory system has been examined extensively in neuroimaging studies. However, the investigation of neural(More)
Successful behavior requires selection and preferred processing of relevant sensory information. The cortical representation of relevant sensory information has been related to neuronal oscillations in the gamma frequency band. Pain is of invariably high behavioral relevance and, thus, nociceptive stimuli receive preferred processing. Here, by using(More)
Processing of tactile stimuli within somatosensory cortices has been shown to be complex and hierarchically organized. However, the precise organization of nociceptive processing within these cortices has remained largely unknown. We used whole-head magnetoencephalography to directly compare cortical responses to stimulation of tactile and nociceptive(More)
Evidence from behavioral and self-reported data suggests that the patients' beliefs and expectations can shape both therapeutic and adverse effects of any given drug. We investigated how divergent expectancies alter the analgesic efficacy of a potent opioid in healthy volunteers by using brain imaging. The effect of a fixed concentration of the μ-opioid(More)
The traditional view that the cerebral cortex is not involved in pain processing has been abandoned during the past decades based on anatomic and physiologic investigations in animals, and lesion, functional neuroimaging, and neurophysiologic studies in humans. These studies have revealed an extensive central network associated with nociception that(More)
The decision as to whether a sensation is perceived as painful does not only depend on sensory input but also on the significance of the stimulus. Here, we show that the degree to which an impending stimulus is interpreted as threatening biases perceptual decisions about pain and that this bias toward pain manifests before stimulus encounter. Using(More)
Single painful stimuli evoke two successive and qualitatively distinct sensations referred to as first and second pain sensation. Peripherally, the neural basis of this phenomenon is a dual pathway for pain with Adelta and C fibers mediating first and second pain, respectively. Yet, the differential cortical correlates of both sensations are largely(More)
We report findings from clinical examination and cutaneous laser stimulation in a 57-year-old male, who suffered from a right-sided postcentral stroke. In this patient, we were able to demonstrate (i) a dissociation of discriminative and affective components of pain perception and, for the first time in humans, (ii) the dependence of sensory-discriminative(More)