Learn More
Onchocerciasis or river blindness, caused by the filarial nematode Onchocerca volvulus, is the second leading cause of blindness due to infectious diseases. The protective role of the omega-class glutathione transferase 3 from O. volvulus (OvGST3) against intracellular and environmental reactive oxygen species has been described previously. In the present(More)
In a search for molecules involved in the interaction between intestinal nematodes and mammalian mucosal host cells, we performed MS to identify excretory-secretory proteins from Strongyloides ratti. In the excretory-secretory proteins of the parasitic female stage, we detected, in addition to other peptides, peptides homologous with the Caenorhabditis(More)
Phospholipase A2 is an "interfacial" enzyme and its binding to negatively charged surfaces is an important step during catalysis. The Gln48 phospholipase A2 from the venom of Vipera ammodytes meridionalis plays the role of chaperone and directs a toxic His48 PLA2 onto its acceptor. In the venom the two phospholipases A2 exist as a postsynaptic neurotoxic(More)
Onchocerciasis or river blindness, caused by the filarial worm Onchocerca volvulus, is the world's second leading infectious cause of blindness. In order to chronically infect the host, O. volvulus has evolved molecular strategies that influence and direct immune responses away from the modes most damaging to it. The O. volvulus GST1 (OvGST1) is a unique(More)
Structure-function relationships in a molluscan hemocyanin have been investigated by determining the crystal structure of the Rapana thomasiana (gastropod) hemocyanin functional unit RtH2e in deoxygenated form at 3.38 A resolution. This is the first X-ray structure of an unit from the wall of the molluscan hemocyanin cylinder. The crystal structure of RtH2e(More)
tRNA identity elements assure the correct aminoacylation of tRNAs by the cognate aminoacyl-tRNA synthetases. tRNA(Ser) belongs to the so-called class II system, in which the identity elements are rather simple and are mostly located in the acceptor stem region, in contrast to 'class I', where tRNA determinants are more complex and are located within(More)
We have determined the cleavage specificity and the crystal structure of the 3C protease of enterovirus 68 (EV68 3C(pro)). The protease exhibits a typical chymotrypsin fold with a Cys...His...Glu catalytic triad; its three-dimensional structure is closely related to that of the 3C(pro) of rhinovirus 2, as well as to that of poliovirus. The phylogenetic(More)
Bioinformatic searches of genome databases revealed that the number of autophagy-related genes (ATG) is considerably lower in trypanosomes than in higher eukaryotes and even in yeast. This raises the question of whether autophagy in this protozoan parasite is more primitive and represents a rudimentary paradigm due to its early branching off the(More)
The nucleoprotein (NP) of Lassa virus (LASV) strain AV was expressed in a recombinant baculovirus system. The crystal structure of full-length NP was solved at a resolution of 2.45 Å. The overall fold corresponds to that of NP of LASV strain Josiah (Qi, X., Lan, S., Wang, W., Schelde, L. M., Dong, H., Wallat, G. D., Ly, H., Liang, Y., and Dong, C. (2010)(More)
Hyaluronate lyases are a class of endoglycosaminidase enzymes with a high level of complexity and heterogeneity. The main function of the Streptococcus pyogenes bacteriophage protein hyaluronate lyase, HylP2, is to degrade hyaluronan into unsaturated disaccharide units. HylP2 was cloned, over-expressed and purified to homogeneity. The recombinant HylP2(More)