Markus P. Mueller

Learn More
We present two full years of continuous C 6 –C 8 aromatic compound measurements by PTR-MS at the KCMP tall tower (Minnesota, US) and employ GEOS-Chem nested grid simulations in a Bayesian inversion to interpret the data in terms of new constraints on US aromatic emissions. Based on the tall tower data, we find that the RETRO inventory (year-2000)(More)
– The interplay of topological constraints, excluded volume interactions, persistence length and dynamical entanglement length in solutions and melts of linear chains and ring polymers is investigated by means of kinetic Monte Carlo simulations of a three dimensional lattice model. In unknotted and unconcatenated rings, topological constraints manifest(More)
Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering(More)
Does information play a significant role in the foundations of physics? Information is the abstraction that allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever there exists an information unit such(More)
Much progress has recently been made (see for example [1, 2]) in understanding the fine-grained thermodynamics and statistical mechanics of microscopic quantum physical systems, using the fundamental idea of thermodynamics as a particular type of resource theory. A resource theory is a theory that governs which state transitions, whether deterministic or(More)
We present an application of Wertheim's Thermodynamic Perturbation Theory (TPT1) to a simple coarse grained model made of flexibly bonded Lennard-Jones monomers. We use both the Reference Hyper-Netted-Chain (RHNC) and Mean Spherical approximation (MSA) integral equation theories to describe the properties of the reference fluid. The equation of state, the(More)
The interplay of topological constraints and persistence length of ring polymers in their own melt is investigated by means of dynamical Monte Carlo simulations of a three dimensional lattice model. We ask if the results are consistent with an asymptotically regime where the rings behave like (compact) lattice animals in a self-consistent network of(More)
We study the thermal and electric transport of a fluid of interacting Dirac fermions as they arise in single-layer graphene. We include Coulomb interactions, a dilute density of charged impurities and the presence of a magnetic field to describe both the static and the low frequency response as a function of temperature T and chemical potential µ. In the(More)
We establish a link between unitary relaxation dynamics after a quench in closed many-body systems and the entanglement in the energy eigenbasis. We find that even if reduced states equilibrate, they can have memory on the initial conditions even in certain models that are far from integrable. We show that in such situations the equilibrium states are still(More)