Learn More
We extend the local energy model of position detection to cope with temporally varying position signals and the perception of relative position. The extension entails two main components. First, a form of persistence for the position signal based on the temporal impulse response function of the visual system. Secondly, we hypothesise that the perceived(More)
In immersive virtual environments (IVEs), users can control their virtual viewpoint by moving their tracked head and walking through the real world. Usually, movements in the real world are mapped one-to-one to virtual camera motions. With redirection techniques, the virtual camera is manipulated by applying gains to user motion so that the virtual world(More)
Saccadic eye movements transiently distort perceptual space. Visual objects flashed shortly before or during a saccade are mislocalized along the saccade direction, resembling a compression of space around the saccade target. These mislocalizations reflect transient errors of processes that construct spatial stability across eye movements. They may arise(More)
Biological motion perception is the compelling ability of the visual system to perceive complex human movements effortlessly and within a fraction of a second. Recent neuroimaging and neurophysiological studies have revealed that the visual perception of biological motion activates a widespread network of brain areas. The superior temporal sulcus has a(More)
The trajectory of a moving object provides information about its velocity, direction and position. This information can be used to enhance the visual system's ability to detect changes in these parameters. We show that the visibility of the trajectory of a moving object influences the perception of its position. This form of temporal recruitment builds up(More)
Eye movements affect object localization and object recognition. Around saccade onset, briefly flashed stimuli appear compressed towards the saccade target, receptive fields dynamically change position, and the recognition of objects near the saccade target is improved. These effects have been attributed to different mechanisms. We provide a unifying(More)
Redirected walking allows users to walk through large-scale immersive virtual environments (IVEs) while physically remaining in a reasonably small workspace by intentionally injecting scene motion into the IVE. In a constant stimuli experiment with a two-alternative-forced-choice task we have quantified how much humans can unknowingly be redirected on(More)
We present redirection techniques that support exploration of large-scale virtual environments (VEs) by means of real walking. We quantify to what degree users can unknowingly be redirected in order to guide them through VEs in which virtual paths differ from the physical paths. We further introduce the concept of dynamic passive haptics by which any number(More)
Saccadic adaptation is the progressive correction of systematic saccade targeting errors. When a saccade to a particular target is adapted, saccades within a spatial window around the target, the adaptation field, are affected as a function of their distance from the adapted target. Furthermore, previous studies suggest that saccadic adaptation might modify(More)