Markus Koskela

Learn More
The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide(More)
Development of content-based image retrieval (CBIR) techniques has suffered from the lack of standardized ways for describing visual image content. Luckily, the MPEG-7 international standard is now emerging as both a general framework for content description and a collection of specific agreed-upon content descriptors. We have developed a neural,(More)
We have developed a novel system for content-based image retrieval in large, unannotated databases. The system is called PicSOM, and it is based on tree structured self-organizing maps (TS-SOMs). Given a set of reference images, PicSOM is able to retrieve another set of images which are similar to the given ones. Each TS-SOM is formed with a di€erent image(More)
Self-Organising Maps (SOMs) can be used in implementing a powerful relevance feedback mechanism for Content-Based Image Retrieval (CBIR). This paper introduces the PicSOM CBIR system, and describes the use of SOMs as a relevance feedback technique in it. The technique is based on the SOM’s inherent property of topology-preserving mapping from a(More)
Digital image libraries are becoming more common and widely used as visual information is produced at a rapidly growing rate. Creating and storing digital images is nowadays easy and getting more affordable all the time as the needed technologies are maturing and becoming eligible for general use. As a result, the amount of data in visual form is increasing(More)
This paper describes how low-level statistical visual features can be analyzed in our content-based image retrieval system named PicSOM. The lowlevel visual features used in the system are all statistical by nature. They include average color, color moments, contrast-type textural feature, and edge histogram and Fourier transform based shape features. Other(More)
In this paper we present a robust motion recognition framework for both motion capture and RGB-D sensor data. We extract four different types of features and apply a temporal difference operation to form the final feature vector for each frame in the motion sequences. The frames are classified with the extreme learning machine, and the final class of an(More)
Digital image libraries are becoming more common and widely used as more visual information is produced at a rapidly growing rate. Content-based image retrieval is an important approach to the problem of processing this increasing amount of data. It is based on automatically extracted features from the content of the images, such as color, texture, shape,(More)