Learn More
Cellular biochemical networks have to function in a noisy environment using imperfect components. In particular, networks involved in gene regulation or signal transduction allow only for small output tolerances, and the underlying network structures can be expected to have undergone evolution for inherent robustness against perturbations. Here we combine(More)
Cellular signaling networks have evolved an astonishing ability to function reliably and with high fidelity in uncertain environments. A crucial prerequisite for the high precision exhibited by many signaling circuits is their ability to keep the concentrations of active signaling compounds within tightly defined bounds, despite strong stochastic(More)
High-quality quantitative data generated under standardized conditions is critical for understanding dynamic cellular processes. We report strategies for error reduction, and algorithms for automated data processing and for establishing the widely used techniques of immunoprecipitation and immunoblotting as highly precise methods for the quantification of(More)
Chemotaxis allows bacteria to colonize their environment more efficiently and to find optimal growth conditions, and is consequently under strong evolutionary selection. Theoretical and experimental analyses of bacterial chemotaxis suggested that the pathway has been evolutionarily optimized to produce robust output under conditions of such physiological(More)
Temperature is a global factor that affects the performance of all intracellular networks. Robustness against temperature variations is thus expected to be an essential network property, particularly in organisms without inherent temperature control. Here, we combine experimental analyses with computational modeling to investigate thermal robustness of(More)
This work is devoted to the multiharmonic analysis of parabolic optimal control problems in a time-periodic setting. In contrast to previous approaches, we include the cases of different control and observation domains, the observation in certain energy spaces and the presence of control constraints. In all these cases we propose a new preconditioned MinRes(More)
This paper presents the analysis of a distributed parabolic optimal control problem in a multiharmonic setting. In particular, the desired state is assumed to be multiharmonic. After eliminating the control from the optimality system, we arrive at the reduced optimality system for the state and the co-state that is nothing but a coupled system of a forward(More)
Noise in gene expression, either due to inherent stochasticity or to varying inter- and intracellular environment, can generate significant cell-to-cell variability of protein levels in clonal populations. To quantify the different sources of gene expression noise, several theoretical studies have been performed using either a quasi-stationary approximation(More)
This work is devoted to the construction and analysis of robust solution techniques for the distributed optimal control problem for the Stokes equations with inequality constraints on the control. There the first order system of necessary and sufficient optimality conditions is nonlinear. A primal-dual active set method is applied in order to linearize the(More)