Markus Klotz

Learn More
The human enteric nervous system (ENS) derives from migrating neural crest cells (NCC) and is structured into different plexuses embedded in the gastrointestinal tract wall. During development of the NCC, a rearrangement of various cytoskeletal intermediate filaments such as nestin, peripherin, or alpha-internexin takes place. Although all are related to(More)
In Alzheimer's disease (AD), fatal neuronal cell loss occurs long before relevant evidence can lead to a reliable diagnosis. If characteristic pathological alterations take place in the enteric nervous system (ENS), it could be one of the most promising targets for an early diagnosis, using submucosal biopsies from the gut. We therefore investigated time-(More)
The enteric nervous system (ENS) has to respond to continuously changing microenvironmental challenges within the gut and is therefore dependent on a neural stem cell niche to keep the ENS functional throughout life. In this study, we hypothesize that this stem cell niche is also affected during inflammation and therefore investigated lipopolysaccharides(More)
Enteric neurons and blood vessels form intricate networks throughout the gastrointestinal tract. To support the hypothesis of a possible interaction of both networks, we investigated whether primary mesenteric vascular cells (MVCs) and enteric nervous system (ENS)-derived cells (ENSc) depend on each other using two- and three-dimensional in vitro assays. In(More)
The enteric nervous system (ENS) controls and modulates gut motility and responds to food intake and to internal and external stimuli such as toxins or inflammation. Its plasticity is maintained throughout life by neural progenitor cells within the enteric stem cell niche. Granulocyte-colony stimulating factor (G-CSF) is known to act not only on cells of(More)
Protein profiles of developing neural circuits undergo manifold changes. The aim of this proteomic analysis was to quantify postnatal changes in two auditory brainstem areas in a comparative approach. Protein samples from the inferior colliculus (IC) and the superior olivary complex (SOC) were obtained from neonatal (P4) and young adult (P60) rats. The(More)
The enteric nervous system (ENS) orchestrates a broad range of important gastrointestinal functions such as intestinal motility and gastric secretion. The ENS can be affected by environmental factors, diet and disease. Changes due to these alterations are often hard to evaluate in detail when whole gut samples are used. Analyses based on pure ENS tissue can(More)
BACKGROUND Different assays have been used in investigations on human ghrelin blood concentrations. The range of human ghrelin blood concentrations varies markedly between different studies. The variance of reported ghrelin concentrations might be due to patient specific factors, differences in sample processing, different analytical methods and different(More)
  • 1