Markus Kitza

Learn More
This paper describes automatic speech recognition (ASR) systems developed jointly by RWTH, UPB and FORTH for the 1ch, 2ch and 6ch track of the 4th CHiME Challenge. In the 2ch and 6ch tracks the final system output is obtained by a Confusion Network Combination (CNC) of multiple systems. The Acoustic Model (AM) is a deep neural network based on Bidirectional(More)
In this paper we present a system for robust online far-field multi-channel speech recognition with minimal assumptions on microphone configuration and target location. We employ an online-enabled Generalized Eigenvalue (GEV) beamformer and a Long Short-TermMemory (LSTM) network to robustly calculate the signal statistics necessary for the beamforming(More)
  • 1