Markus Kellerhals

Learn More
Efficient breeding and selection of high-quality apple cultivars requires knowledge and understanding of the underlying genetics. The availability of genetic linkage maps constructed with molecular markers enables the detection and analysis of major genes and quantitative trait loci contributing to the quality traits of a genotype. A segregating population(More)
ABSTRACT Breeding of resistant apple cultivars (Malus x domestica) as a disease management strategy relies on the knowledge and understanding of the underlying genetics. The availability of molecular markers and genetic linkage maps enables the detection and the analysis of major resistance genes as well as of quantitative trait loci (QTL) contributing to(More)
Large-scale marker-assisted selection requires highly reproducible, consistent and simple markers. The use of genetic markers is important in woody plant breeding in general, and in apple in particular, because of the high level of heterozygosity present in Malus species. We present here the transformation of two RAPD markers, which we found previously to(More)
Reports from several European countries of the breakdown of the Vf resistance, the most frequently used source of resistance in breeding programs against apple scab, emphasize the urgency of diversifying the basis of apple scab resistance and pyramiding different apple scab resistances with the use of their associated molecular markers. GMAL 2473 is an(More)
Proof of concept of Bayesian integrated QTL analyses across pedigree-related families from breeding programs of an outbreeding species. Results include QTL confidence intervals, individuals’ genotype probabilities and genomic breeding values. Bayesian QTL linkage mapping approaches offer the flexibility to study multiple full sib families with known(More)
Molecular breeding for pathogen resistance faces two major problems that delay its widespread adoption, resistance breakdown and difficulties in unambiguously identifying the alleles of the markers associated with specific resistance genes. Since the breakdown of the Rvi6 (Vf) gene in the Northern part of Europe breeders have intensified the search for new(More)
Fire blight is the most important bacterial disease in apple (Malus ×  domestica) and pear (Pyrus communis) production. Today, the causal bacterium Erwinia amylovora is present in many apple- and pear-growing areas. We investigated the natural resistance of the wild apple Malus ×  robusta 5 against E. amylovora, previously mapped to linkage group 3. With a(More)
Pome fruit genetic resources collections constitute a highly valuable resource not only for fruit breeding but also for direct use by nurseries, growers, and home gardeners. In order to use these resources efficiently and sustainably, reliable evaluation data on fruit and tree characteristics must be generated. Here we focus on pome fruit genetic resources(More)
The aroma trait in apple is a key factor for fruit quality strongly affecting the consumer appreciation, and its detection and analysis is often an extremely laborious and time consuming procedure. Molecular markers associated to this trait can to date represent a valuable selection tool to overcome these limitations. QTL mapping is the first step in the(More)
A fire blight resistance QTL explaining 34.3%-46.6% of the phenotypic variation was recently identified on linkage group 7 of apple cultivar 'Fiesta' (F7). However, markers flanking this QTL were AFLP and RAPD markers unsuitable for marker-assisted selection (MAS). Two RAPD markers bracketing the QTL have been transformed into SCAR (sequence-characterized(More)