Learn More
We consider the PC-algorithm ([13]) for estimating the skeleton of a very high-dimensional acyclic directed graph (DAG) with corresponding Gaussian distribution. The PC-algorithm is computationally feasible for sparse problems with many nodes, i.e. variables, and it has the attractive property to automatically achieve high computational efficiency as a(More)
We consider the problem of learning causal information between random variables in directed acyclic graphs (DAGs) when allowing arbitrarily many latent and selection variables. The FCI (Fast Causal Inference) algorithm has been explicitly designed to infer conditional independence and causal information in such settings. However, FCI is computationally(More)
Large contingency tables summarizing categorical variables arise in many areas. One example is in biology, where large numbers of biomarkers are cross-tabulated according to their discrete expression level. Interactions of the variables are of great interest and are generally studied with log-linear models. The structure of a log-linear model can be(More)
BACKGROUND Functioning and disability are universal human experiences. However, our current understanding of functioning from a comprehensive perspective is limited. The development of the International Classification of Functioning, Disability and Health (ICF) on the one hand and recent developments in graphical modeling on the other hand might be combined(More)
BACKGROUND Large scale screening for synthetic lethality serves as a common tool in yeast genetics to systematically search for genes that play a role in specific biological processes. Often the amounts of data resulting from a single large scale screen far exceed the capacities of experimental characterization of every identified target. Thus, there is(More)
MOTIVATION Although Genome Wide Association Studies (GWAS) genotype a very large number of single nucleotide polymorphisms (SNPs), the data are often analyzed one SNP at a time. The low predictive power of single SNPs, coupled with the high significance threshold needed to correct for multiple testing, greatly decreases the power of GWAS. RESULTS We(More)
Covariate adjustment is a widely used approach to estimate total causal effects from observational data. Several graphical criteria have been developed in recent years to identify valid covari-ates for adjustment from graphical causal models. These criteria can handle multiple causes, latent confounding, or partial knowledge of the causal structure;(More)
  • 1