Markus Jonscher

Learn More
There exist many scenarios where pixel information is available only on a non-regular subset of pixel positions. For further processing, however, it is required to reconstruct such images on a regular grid. Besides many other algorithms, frequency selective reconstruction can be applied for this task. It performs a block-wise generation of a sparse signal(More)
Achieving a higher spatial resolution is of particular interest in many applications such as video surveillance and can be realized by employing higher resolution sensors or applying super-resolution methods. Traditional super-resolution algorithms are based on either a single low resolution image or on multiple low resolution frames. In this paper, a(More)
Even though image signals are typically defined on a regular 2D grid, there also exist many scenarios where this is not the case and the amplitude of the image signal only is available for a non-regular subset of pixel positions. In such a case, a resampling of the image to a regular grid has to be carried out. This is necessary since almost all algorithms(More)
Lost image areas with different size and arbitrary shape can occur in many scenarios such as error-prone communication, depth-based image rendering or motion compensated wavelet lifting. The goal of image reconstruction is to restore these lost image areas as close to the original as possible. Frequency selective extrapolation is a block-based method for(More)
Increasing spatial image resolution is a widely discussed area in the field of image processing. In this paper, we present an efficient reconstruction approach for high-resolution images, taken with irregularly shielded low-resolution sensors in a multiview setup. The approach is based on the sparsity assumption, meaning that natural images can be(More)
Increasing the spatial resolution is an ongoing research topic in image processing. A recently presented approach applies a non-regular sampling mask on a low resolution sensor and subsequently reconstructs the masked area via an extrapolation algorithm to obtain a high resolution image. This paper introduces an acceleration of this approach for use with(More)
Multi-view image acquisition systems with two or more cameras can be rather costly due to the number of high resolution image sensors that are required. Recently, it has been shown that by covering a low resolution sensor with a non-regular sampling mask and by using an efficient algorithm for image reconstruction, a high resolution image can be obtained.(More)
Increasing spatial image resolution is an often required, yet challenging task in image acquisition. Recently, it has been shown that it is possible to obtain a high resolution image by covering a low resolution sensor with a non-regular sampling mask. Due to the masking, however, some pixel information in the resulting high resolution image is not(More)
Recently, it has been shown that a high resolution image can be obtained without the usage of a high resolution sensor. The main idea has been that a low resolution sensor is covered with a non-regular sampling mask followed by a reconstruction of the incomplete high resolution image captured this way. In this paper, a multi-frame reconstruction approach is(More)