Markus Henningsson

Learn More
The aim of this study was to demonstrate how personality test data can be plotted with a multivariate method known as Partial Least Squares of Latent Structures (PLS). The basic methodology behind PLS modeling is presented and the example demonstrates how a PLS model of personality test data can be used for diagnostic prediction. Principles for validating(More)
Respiratory motion remains the major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography. Motion correction in coronary magnetic resonance angiography is typically performed with a diaphragmatic 1D navigator (1Dnav) assuming a constant linear relationship between diaphragmatic and cardiac respiratory motion. In(More)
Several self-navigation techniques have been proposed to improve respiratory motion compensation in coronary MR angiography. In this work, we implemented a 2D self-navigation method by using the startup profiles of a whole-heart balanced Steady-state free precession sequence, which are primarily used to catalyze the magnetization towards the steady-state.(More)
PURPOSE Robust motion correction is necessary to minimize respiratory motion artefacts in coronary MR angiography (CMRA). The state-of-the-art method uses a 1D feet-head translational motion correction approach, and data acquisition is limited to a small window in the respiratory cycle, which prolongs the scan by a factor of 2-3. The purpose of this work(More)
PURPOSE To describe a new framework for interleaving scans and demonstrate its usefulness for image-based respiratory motion correction in whole heart coronary MR angiography (CMRA). METHODS Scan interleaving using the proposed approach was achieved by switching between separately defined, independent scans at arbitrary time points during their execution,(More)
PURPOSE Coronary magnetic resonance angiography (MRA) is commonly performed with diaphragmatic navigator (NAV) gating to compensate for respiratory motion, but this approach is inefficient as data must be reacquired when it is outside the acceptance window. We therefore developed and validated a motion compensation technique based on three-dimensional (3D)(More)
Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and(More)
Respiratory motion compensation using diaphragmatic navigator gating with a 5 mm gating window is conventionally used for free-breathing cardiac MRI. Because of the narrow gating window, scan efficiency is low resulting in long scan times, especially for patients with irregular breathing patterns. In this work, a new retrospective motion compensation(More)