Learn More
The posttranslational regulation of proteins by lysine (Lys) acetylation has recently emerged to occur not only on histones, but also on organellar proteins in plants and animals. In particular, the catalytic activities of metabolic enzymes have been shown to be regulated by Lys acetylation. The Arabidopsis (Arabidopsis thaliana) genome encodes two(More)
The prfA gene of Listeria monocytogenes encodes a protein that activates transcription of the listeriolysin gene (lisA). In order to explore the role of the prfA gene product in the pathogenesis of listerial infection, we constructed a site-directed insertion mutation in prfA by the chromosomal integration of a novel suicide vector containing a portion of(More)
Solanaceaeous taxa produce diverse peptide serine proteinase inhibitors (SPIs), known antidigestive defenses that might also control endogenous plant proteases. If and how a plant coordinates and combines its different SPIs for the defense against herbivores and if these SPIs simultaneously serve developmental functions is unknown. We examine Solanum(More)
The ability of Listeria monocytogenes to move within the cytosol of infected cells and their ability to infect adjacent cells is important in the development of infection foci leading to systemic disease. Interaction with the host cell microfilament system, particularly actin, appears to be the basis for propelling the bacteria through the host cell(More)
Using the established quail cell line Q/d3 conditionally transformed by the v-jun oncogene, cDNA clones (TOJ2, TOJ3, TOJ5, TOJ6) were isolated by representational difference analysis (RDA) that correspond to genes which were induced immediately upon conditional activation of v-jun. One of these genes, TOJ3, is immediately and specifically activated after(More)
The BKJ gene was originally identified based on its specific transcriptional activation in jun-transformed avian fibroblasts. We now show that BKJ is a direct transcriptional target of the AP-1 transcription factor components Jun and Fos. The complete structural organization of the quail BKJ gene was determined by nucleotide sequence analysis and(More)
Cell transformation by the Myc oncoprotein involves transcriptional activation or suppression of specific target genes with intrinsic oncogenic or tumor-suppressive potential, respectively. We have identified the BASP1 (CAP-23, NAP-22) gene as a novel target suppressed by Myc. The acidic 25-kDa BASP1 protein was originally isolated as a cortical(More)
We have analyzed differential gene expression in normal versus jun-transformed avian fibroblasts by using subtracted nucleic acid probes and differential nucleic acid hybridization techniques for the isolation of cDNA clones. One clone corresponded to a gene that was strongly expressed in a previously established quail (Coturnix japonica) embryo fibroblast(More)
Avian fibroblasts transformed simultaneously by the v-myc and v-mil(raf) oncogenes of acute leukemia and carcinoma virus MH2 contain elevated levels of c-Fos and c-Jun, major components of the transcription factor complex AP-1. To define specific transcriptional targets in these cells, subtractive hybridization techniques were employed leading to the(More)
Using subtractive hybridization techniques, we have isolated a gene termed JAC that is strongly and specifically activated in avian fibroblasts transformed by the v-jun oncogene of avian sarcoma virus 17 (ASV17), but not in cells transformed by other oncogenic agents. Furthermore, JAC is highly expressed in cell lines derived from jun-induced avian(More)