Learn More
Realistically animated fluids can add substantial realism to interactive applications such as virtual surgery simulators or computer games. In this paper we propose an interactive method based on Smoothed Particle Hydrodynamics (SPH) to simulate fluids with free surfaces. The method is an extension of the SPH-based technique by Desbrun to animate highly(More)
In this paper we introduce, analyze and quantitatively compare a number of surface simplification methods for point-sampled geometry. We have implemented incremental and hierarchical clustering, iterative simplification, and particle simulation algorithms to create approximations of point-based models with lower sampling density. All these methods work(More)
We propose a new approach to collision and self– collision detection of dynamically deforming objects that consist of tetrahedrons. Tetrahedral meshes are commonly used to represent volumet-ric deformable models and the presented algorithm is integrated in a physically–based environment, which can be used in game engines and surgical simulators. The(More)
This paper addresses the problem of remapping the disparity range of stereoscopic images and video. Such operations are highly important for a variety of issues arising from the production, live broadcast, and consumption of 3D content. Our work is motivated by the observation that the displayed depth and the resulting 3D viewing experience are dictated by(More)
Surface elements (surfels) are a powerful paradigm to efficiently render complex geometric objects at interactive frame rates. Unlike classical surface discretizations, i.e., triangles or quadrilateral meshes, surfels are point primitives without explicit connectivity. Surfel attributes comprise depth, texture color, normal, and others. As a pre-process, an(More)
We have measured 3D face geometry, skin reflectance, and subsurface scattering using custom-built devices for 149 subjects of varying age, gender, and race. We developed a novel skin reflectance model whose parameters can be estimated from measurements. The model decomposes the large amount of measured skin data into a spatially-varying analytic BRDF, a(More)
This paper describes a method for scene reconstruction of complex, detailed environments from 3D light fields. Densely sampled light fields in the order of 10<sup>9</sup> light rays allow us to capture the real world in unparalleled detail, but efficiently processing this amount of data to generate an equally detailed reconstruction represents a significant(More)
Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective comparisons in many fields. At the same time, legacy datasets may impend the evolution of a field due to saturated algorithm performance and the lack of contemporary, high quality data. In this work we(More)
Figure 1: The pitbull with its inflated head (left) shows the artifact of linear FEM under large rotational deformations. The correct deformation is shown on the right. Abstract In this paper we present a fast and robust approach for simulating elasto-plastic materials and fracture in real time. Our method extends the warped stiffness finite element(More)
This paper describes a passive stereo system for capturing the 3D geometry of a face in a single-shot under standard light sources. The system is low-cost and easy to deploy. Results are submillimeter accurate and commensurate with those from state-of-the-art systems based on active lighting, and the models meet the quality requirements of a demanding(More)